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ABSTRACT 

This thesis describes improved methods for the characterization of pure and formulated 

solid active pharmaceutical ingredients (APIs) by solid-state nuclear magnetic resonance 

(SSNMR) spectroscopy. APIs can be prepared in many different solid forms and phases that 

affect their physicochemical properties and suitability for oral dosage forms. The development 

and commercialization of dosage forms require analytical techniques that can determine and 

quantify the API phase in the final drug product. 13C solid-state NMR spectroscopy is widely 

employed to characterize pure and formulated solid APIs; however, 13C SSNMR experiments on 

dosage forms with low API loadings are often challenging due to low sensitivity and interference 

from excipients. Here, fast magic angle spinning (MAS) 1H SSNMR experiments are shown to 

be applicable for the rapid characterization of low drug load formulations. Diagnostic 1H 

SSNMR spectra of APIs within tablets are obtained by using combinations of frequency-

selective saturation and excitation pulses, 2D experiments, and 1H spin diffusion periods. 1H 

SSNMR provides a one to three orders of magnitude reduction in experiment time compared to 

standard 13C SSNMR experiments, enabling diagnostic SSNMR spectra of dilute APIs within 

tablets to be obtained within a few minutes. 

We introduce fast MAS 1H{14N} Frequency Selective (FS)-HMQC experiments, 

analogous to solution SOFAST HMQC experiments, which provides a factor 2-3 improvement 

in sensitivity which corresponds to a factor 4 to 9 reductions in experiment times compared to 

conventional HMQC SSNMR experiments. Using this method 1H-14N through bond and through 

space correlation spectra can be acquired in minutes on model compounds and a few hours from 

more challenging samples. The 1H{14N} FS RESPDOR experiments were then used to measure 

the N-H interatomic distances for two pharmaceutically important compounds. These 
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measurements were used to determine the protonation states of APIs and assign them as salts or 

cocrystals.  
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CHAPTER 1.    GENERAL INTRODUCTION  

This thesis describes the use of SSNMR spectroscopy to characterize pure and formulated 

APIs. In chapter 2, pure APIs and commercial dosage forms are characterized using fast MAS 1H 

SSNMR. Fast MAS improves the resolution of the 1H SSNMR spectra, enabling the direct 

detection of 1H NMR signals from the API signals within commercial tablets. It is shown how 

fast MAS 1H SSNMR confirms the presence of the desired form of the API in the dosage form. 

A thorough comparison between the advantages of using fast MAS 1H SSNMR over 13C 

SSNMR is presented under this chapter. Furthermore, it was possible to detect dilute 

polymorphic of APIs within model formulations using 1H SSNMR. 

In chapter 3, 1H{14N} FS HMQC and FS RESPDOR experiments are used to characterize 

multicomponent APIs. Here, modified pulse sequences are used for frequency selective dipolar 

HMQC (FS D-HMQC) experiments which can be acquired in a few minutes. It is also shown 

here that the FS HMQC experiments can be performed on other nuclei such as 17O and 35Cl, 

which are often found in pharmaceutical compounds. Furthermore, FS RESPDOR experiments 

are used to determine the NH bond lengths of two APIs and distinguish them as salt and 

cocrystal. 

Introduction to solid APIs 

A significant portion of all APIs is small organic molecules which are typically 

formulated as solid drugs. Solid APIs may exist in many different physical forms.1 These 

different physical forms include salts, polymorphs, hydrates, solvates, amorphous forms, and 

cocrystals. A detailed schematic of the most common polymorphic forms of APIs is shown in 

Figure 1. 
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Figure 1. Different possible solid-state forms of APIs reproduced from Adv. Drug Deliv. Rev. 

2017,117, 86–110 

 

Unique solid forms are synthesized by changing crystallization/precipitation conditions 

(solvents, anti-solvents, temperature, heating, grinding, cooling, etc.) and/or reacting the APIs 

with acids, bases or other coformers. Different polymorphic forms of APIs have unique 

arrangements of their three-dimensional molecular structure within the crystallographic lattice.2 

The different placement of the molecules within a lattice alters the intermolecular interactions 

and strongly impacts the physical properties such as stability, melting point, solubility and 

bioavailability. For these reasons solid-state chemists and formulation scientists extensively 

search for methods to crystalize or precipitate different solid forms of APIs with suitable 

physicochemical properties required in dosage forms.3 The objective is to find a solid form of an 

API that will be stable over long time periods and offers the required water solubility and 

bioavailability. Note that unique solid API forms are also patentable, hence, intellectual property 

considerations also drive the discovery and characterization of solid APIs. 
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Polymorph screening 

Salts and cocrystals are found to be the very commonly analyzed polymorphs.4 

Therefore, they need to be discovered before performing any characterization or detailed 

analysis. For the early discovery of new solid forms of the APIs, a validated screening process of 

salts/cocrystals must be implemented. The main goal of the screening strategy is to find 

salts/cocrystals or other polymorphs with desirable physical and chemical properties such as 

solubility, crystallinity, hygroscopicity, and bioavailability before issuing the patents for the new 

forms.5 

Solid forms of APIs 

Currently, salt formation is one of the main methods of modifying APIs to enhance 

physical properties. Approximately half of commercial medicines found in the market are 

administered as salts and one-third of the APIs that are used in tablet formulation are found to be 

in the solid form.6–8 Salt formation involves acid-base chemistry where there is a complete 

proton transfer from the acid to the API. Salt formation often improves the solubility and 

bioavailability of API molecules and by using different acids the physical properties such as the 

melting point, stability, release kinetics, and hygroscopicity can be altered. This approach has 

been routinely used when a drug candidate shows low solubility and release rates.9 Crystalline 

salts can also exist in multiple forms such as anhydrous, hydrated and solvate forms.10 However, 

a major drawback of salts is that the API molecules must possess acid or basic ionizable groups 

to favor the proton transfer. Cocrystal formation is an alternative method to improve the 

pharmacokinetic properties of APIs.11 In this process of co-crystallization hydrogen bonding 

motifs are involved instead of proton transfer between the free base and the counterions. In 

cocrystals, the interaction between the API and the counterion is freely reversible and covalent. 

In literature, there are multiple definitions for a cocrystal. A general definition for a cocrystal as 
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mentioned in literature can be quoted as, “an API, neutral or ionic form or a zwitterion, along 

with a neutral coformer, held together through noncovalent, freely reversible interactions”.1 The 

complete proton transfer between  GDC-0022, which is an API developed at Genetech Inc. and 

Tosylic acid to form a salt is shown in Figure 2A below. The formation of hydrogen bonding 

between GDC-0022 and Fumaric acid to form a cocrystal is shown in Figure 2B. 

 

Figure 2. Crystal structures of (A) GDC-0022 Tosylate salt and (B) GDC-0022 Hemi-Fumaric 

acid cocrystal. 

 

Generally, acid coformers have a range of acid dissociation constants (pKa) which may 

be used to predict cocrystal or salt formation. The counterion is selected based upon the pKa rule 

which takes into account the degree of ionization of the acidic or the basic functional groups in 

the drugs.12 When the difference in the pKa of the API and the coformer (pKa) is greater than 2-

3, a proton transfer between the API molecule and acid coformer takes place to form a salt. If the 

pKa is lesser than 2, a cocrystal should almost always form. However, when the 0 ≤ pKa ≤ 3 

the prediction of salt/cocrystal formation is ambiguous and either a cocrystal or a motif with 

intermediate proton transfer could form. Therefore, pKa alone is not an accurate way to predict 

the formation of a salt or a cocrystal.13,14 
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A significant proportion of the APIs used in formulations is small organic molecules. 

These molecules can be crystallized in different forms to produce another important class of 

multicomponent APIs known as polymorphs.15 Polymorphism could be defined as the ability of a 

compound to exist in two or more crystalline forms in which the molecule has different packing 

or conformational arrangements.16 Polymorphs of a given API have unique crystal structures 

with different special atomic arrangements. A given polymorphic form of an API shows different 

physical and chemical properties due to the differences in the crystal structure. Sulfathiazole and 

theophylline are classic examples of molecules exhibiting polymorphism.17,18 Different 

polymorphs of a compound are typically obtained by varying crystallization conditions and/or by 

heating solid phases. For all these reasons, it is crucial to identify all the possible solid forms of 

an API to identify the phase most suitable for the commercial formulation. As described below, 

SSNMR spectroscopy is a commonly applied tool to identify, quantify, and characterize the 

structure of different solid API forms. 

Once the formulation scientists have identified the most suitable solid form of an API 

(salt, cocrystal or polymorph) that will be used in a formulation it is crucial to ensure that the 

desired solid form of the API remains in the final drug product. Different API forms can form 

because the API may be subjected to elevated temperatures, pressures and come in contact with 

different solvents during the manufacturing process, all of which could induce a phase 

transformation to a new polymorph, or result in dissociation of the API from the acids used to 

make salts or cocrystals.19  

Characterization of solid APIs 

Accurate characterization of solid forms of APIs such as salts, cocrystals, and 

polymorphs is a critical part of the drug development process. Specifically, characterization 

techniques are required to determine the molecular structures of solid APIs, detect API-excipient 
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interactions, quantify API loads, and identify the existence of other solid forms of the API. If 

large single crystals (edge lengths > 100 m) are available, then single-crystal x-ray diffraction 

(SCXRD) is the preferred technique for determination of the molecular structure of solid APIs.20 

However, widespread use of SCXRD is hindered by the difficulty of producing diffraction 

quality crystals. Powder X-ray diffraction (PXRD) is often used to “fingerprint” different solid 

forms of APIs, however, determining the molecular structure from PXRD is very challenging. 

However, both of these diffraction techniques do not assist in locating the atomic positions 

responsible for hydrogen bonding.21 They are also generally inapplicable to formulated APIs 

since the excipients often make up the bulk of a tablet and will interfere or obscure diffraction 

peaks from the API. Infrared (IR) spectroscopy is widely applied to probe covalent and hydrogen 

bonding in APIs.22 However, the resolution of IR spectra is often insufficient and there is not 

enough information available from this technique to determine a molecular structure. SSNMR is 

an important analytical tool that is extensively used to characterize pharmaceutical compounds, 

which will be discussed in the next section. 

Application of SSNMR to drug formulations 

The primary use of SSNMR spectroscopy in the pharmaceutical field is to fingerprint and 

quantify solid drug substances. SSNMR spectroscopy can answer various important questions 

related to pharmaceutical compounds such as is the material crystalline or amorphous? What 

crystalline form (polymorph) is present? How many different solid forms are present in a 

mixture? Questions related to mobility and dynamics can also be addressed with the help of 

SSNMR.23 SSNMR spectroscopy is a non-destructive method and non-invasive technique that is 

both quantitative and selective. SSNMR spectroscopy is quantitative because the NMR signal is 

proportional to the number of nuclei present in the sample. Therefore, quantification of different 
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crystalline forms such as polymorphs, solvates, and also mixtures of crystalline and amorphous 

components can be performed.24 Furthermore, the ability to selectively label compounds with 

favorable nuclei is useful for looking at drug excipient interactions and changes taking place in a 

formulation.  

Polymorph identification and amorphous form characterization 

SSNMR is recognized for its capability to identify different crystalline forms of drug 

molecules. 1H, 13C, 15N and 17O isotropic chemical shifts are very sensitive to even slight 

structural differences that occur in different solid forms. Therefore, different solid forms of 

formulations and commercial drug products will have different SSNMR spectra.25,26  Two-

dimensional SSNMR has been routinely used to characterize amorphous pharmaceuticals such as 

ASDs. These experiments give important information related to the interaction between the APIs 

and polymer molecules that are used for the stabilization of the ASDs.27  

Quantification of drug loads 

Several examples have been reported in literature where SSNMR is used to quantify the 

drug load of an API. Recent studies have used 1H, 13C and 19F SSNMR to quantify both 

crystalline and amorphous forms of API in bulk and dosage forms.28–30 In addition, studies have 

shown that APIs at levels low as 1 % w/w can be detected using NMR.31 Also, SSNMR is used 

to quantify important phenomena such as the disproportionation of APIs in commercial tablets.32 

Dynamics 

SSNMR has been extensively used to look at the dynamics of amorphous materials and 

lyophilized systems. Generally, the relaxation times of different species in the APIs are used to 

understand the mobility and phase separations taking place within the system.33  
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Information from SSNMR spectra and SSNMR techniques 

An important piece of information from NMR spectra is the isotropic chemical shift. The 

isotropic chemical shift depends on the surrounding electronic environment. The chemical shift 

is a very sensitive parameter to conformational electronic changes at various sights of a 

molecule, which is useful to identify different forms of molecules depending on the type of 

interactions and bonding patterns. The NMR linewidths also provide valuable information about 

the nature of the system analyzed. Generally, the NMR linewidths of amorphous materials are 

order magnitude broader than those of crystalline materials due to the distribution of chemical 

shifts. The line widths and line shapes of crystalline materials can provide information about the 

morphology.34 Relaxation time is also another important parameter that reports on correlations 

between various parameters such as dynamics and temperature dependence.35 Also, relaxation 

times have been exploited to predict the particle size distributions and other properties such as 

chemical stability and dissolution rates.36 Multi-dimensional NMR experiments on 

pharmaceutical drug molecules are useful to identify the connectivity between the APIs and 

excipients as well as the assignment of peaks which helps determination of miscibility in 

multicomponent APIs such amorphous solid dispersions.37 

SSNMR and X-ray crystallography are two techniques of choice for the characterization 

of structural properties of commercial synthetic drugs or novel supramolecular complexes. The 

implementation of SSNMR techniques on pharmaceutical compounds relies not only on the 

pulse sequence schemes but also on technological developments in probes, high field magnets, 

and high-power sources. Sensitivity is often a critical factor when analyzing pharmaceutical 

compounds with dilute APIs. Each nucleus has its own advantages and disadvantages regarding 

the sensitivity of the NMR experiment. Various techniques such as selective isotropic 
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enrichment and dynamic nuclear polarization (DNP)38,39 are used to improve the sensitivity of 

the NMR experiment and to widen the applications of SSNMR on pharmaceutical compounds. 

Magic angle spinning 

In solution NMR the linewidths are typically narrow because the molecules isotopically 

tumble in the liquid medium. However, for most of the compounds in the solid-state, there is no 

such tumbling or negligible mobility of the molecules. Therefore in the solid-state basically two 

main interactions that are averaged out in solution NMR are present. They are the dipole-dipole 

couplings and chemical shift anisotropy (CSA).40 Also, other factors that contribute to broad 

NMR signals are structural disorder and strong homonuclear dipolar interactions. Magic angle 

spinning (MAS) is a technique that is commonly used in the field of SSNMR nowadays.41–43 

MAS averages anisotropic interactions that broaden the NMR spectra of powdered samples. By 

far, fast MAS has been the primary and most efficient resolution enhancement technique in 

SSNMR.  

The magic angle is tilted from the axis of the principal magnetic field 𝐵𝑜 by 54.73°, 

which corresponds to the orientation of the body diagonal of a cube. Mechanical rotation of the 

powdered samples around this axis at a frequency exceeding the magnitude of the interactions (in 

kHz), averages out the anisotropic interactions that have a dependence of the (3cos2𝜃 − 1)/2 

term, that is the second-order Legendre polynomial which gives the dependency towards the 

orientation 𝜃 with respect to the applied external magnetic field 𝐵𝑜. A schematic of the 

orientation of the sample at the magic angle with respect to 𝐵𝑜 is given in figure 3. Figure 3 also 

contains the 400 MHz (B0 = 9.4 T) Bruker Avance III HD spectrometer equipped with broadband 

double resonance HX 1.3 mm fast MAS and 4 mm HX probes. 
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Figure 3. Schematic of the magic angle (left) reproduced from Annu. Reports NMR Spectrosc. 

2014, 81, 109–144 and 400 MHz (B0 = 9.4 T) magnet (right) 

 

Solid-state NMR distance measurements 

The development of NMR methods for accurately measuring bond distances between 

nuclei pairs is a significant application of SSNMR in the structural analysis of pharmaceutical 

compounds. The RESPDOR44 technique is one of the common ways of measuring distances 

between a spin ½ nucleus such as 1H or 13C and a quadrupolar nucleus such as 14N.45 One of the 

main applications of the NMR experiments used to determine the bond lengths is the 

determination of the protonation state of an API and discrimination of different polymorphic 

forms. 

High resolution 1H NMR experiments 

Due to the high natural abundance (~100 %), high sensitivity due to high 𝛾 and its 

ubiquitous nature in many organic solids, 1H NMR plays a crucial role in structural analysis of 

small pharmaceutical compounds. Due to the rapid isotropic tumbling of molecules in the liquid 

state, very narrow 1H NMR line widths are observed. However, in the solid-state, as a result of 

the strong homonuclear dipolar couplings on the order of 10 – 40 kHz, broad 1H SSNMR spectra 
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(around tens of kHz) are observed.46 Therefore, in most cases 1H SSNMR gives rise to 

featureless spectra, making the peak assignments hard. For 1H MAS NMR experiments the 

proton line width is usually inversely proportional to the sample spinning frequency. Moderate 

spinning frequencies (below 10 kHz) are insufficient to average out strong dipolar couplings, 

resulting in poor resolution  and limited structural information.47 Introduction of faster MAS 

rates (up to 50 kHz) has been extensively used to obtain well-resolved 1H NMR spectra of solid 

compounds. However, recent advancements in the probes, high field magnets, and manufacture 

of smaller diameter rotors (0.7 mm) have enabled the use of ultra-fast MAS frequencies (up to 

110 kHz) and have opened up a wider range of applications for 1H SSNMR in comparison to 

other analytical or diffraction-based techniques.48,49 

13C SSNMR experiments 

The 13C isotope is a dilute spin with a natural abundance of ~1.1% and a moderate 𝛾 (ca. 

1/4 of 1H). Consequently, the relative NMR receptivity of the 13C nucleus is ca. 6000 times 

lower than that of 1H. In the recent developments of pharmaceutical research, one of the most 

common experiments is the 13C cross-polarization CP/MAS.50 Although, this makes 13C SSNMR 

experiments time consuming, one advantage of using 13C over 1H is that the strong homonuclear 

dipolar couplings that broaden in the NMR spectra will be absent, which makes the peak 

assignments easier due to the higher resolution. The sensitivity of a 13C NMR experiment is 

usually improved by polarization transfer from the 1H spins during the CP step. This 

phenomenon involves the application of two RF fields to both the nuclei to fulfill the Hartmann-

Hahn condition during the contact time.51 Sample rotation at moderate MAS frequencies (~10 

kHz) averages out the chemical shift anisotropy, providing SSNMR spectra with resolution 

comparable to solution 13C NMR spectra. To remove heteronuclear dipolar interactions with 
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protons, high power heteronuclear decoupling with a 1H RF field above 80 kHz is applied during 

acquisition.52 

14N SSNMR experiments 

Due to the ubiquity of nitrogen in organic solids, nitrogen NMR is widely applied for the 

characterization of pharmaceuticals and other organic molecules. The two NMR active nuclei of 

nitrogen are 15N and 14N where 15N (I = ½) has a natural isotopic abundance of ~0.37% while 14N 

(I = 1) is ~99% abundant. 14N has a lower gyromagnetic ratio and it being a spin-1 quadrupolar 

nucleus, is very sensitive to the electric field gradients (EFG), which is determined by the 

symmetry at the nuclear site, through the quadrupolar interaction.53 The quadrupolar nature of 

14N makes the acquisition and analysis of 14N NMR spectra difficult. 14N SSNMR spectra are 

broadened by the first order quadrupolar interaction, often resulting in spectra that have breadths 

on the order of several MHz.  However, indirect detection of 14N can be achieved using 

experiments such as heteronuclear multiple quantum coherence (HMQC) or heteronuclear single 

quantum coherence (HSQC) where the coherence transfer from neighboring 1H or 13C to 14N is 

achieved thorough J or residual dipolar coupling (RDCs).54–57 These sequences offer improved 

sensitivity and resolution as compared to the direct detection of 14N SSNMR signals. 

SSNMR experiments on APIs with other NMR active nuclei 

19F is also a very suitable nucleus to do SSNMR experiments on because it is 100 % 

naturally abundant and has large 𝛾 providing receptivity only lower to that of 1H. Another 

advantage of using 19F NMR to look at pharmaceutical drug molecules is that the most common 

excipients do not contain any fluorine atoms. Therefore, 19F SSNMR experiments can be used to 

obtain characteristic fingerprint spectra of the APIs within dosage forms. In the literature 13C-19F 

and 1H-19F heteronuclear correlation (HETCOR) SSNMR experiments have been shown to be 
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very useful to identify API forms and probe interactions between amorphous APIs and polymers 

in tablets.58–60 

35Cl SSNMR is also a good probe of the chloride anion environments in APIs that exist as 

HCl salts. 35Cl SSNMR has been extensively used to distinguish polymorphs.61 In the literature 

studies have shown that 35Cl SSNMR experiments can be helpful for the structural 

characterization of HCl salts of APIs.62 17O SSNMR is also another nucleus that has gained close 

attention currently in the fields of pharmaceuticals. Recent studies have shown that O-H bond 

distances can be probed on 17O labeled APIs.63 

DFT-based crystal structure prediction 

Theoretical methods are nowadays commonly used to predict the crystal structures, 

physical properties and SSNMR spectra of solid APIs. Computational crystal structure prediction 

(CSP) is used to predict all the possible solid structures of APIs. Recent studies have shown how 

SSNMR can be combined with plane-wave density functional theory (DFT) calculations to 

validate the crystal structures of potential pharmaceutical compounds and differentiate 

polymorphs based on the chemical shift.64,65 These DFT calculations are generally supported by 

gauge including projected augmented wave (GIPAW) approach to get a clear comparison 

between the experimental and theoretical chemical shift values and has enabled the rapid 

development of chemical shift-based NMR crystallography. Plane-wave DFT GIPAW 

calculations can accurately predict the slight differences in chemical shifts that occur between 

different API forms. However, the computational cost when analyzing larger crystal structures is 

one downside in this approach. To overcome this issue, the development of machine learning 

models has emerged as an efficient method for crystal structure validation and predicting the 

accurate crystal structures of pharmaceutically important compounds.66 
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Abstract 

Active pharmaceutical ingredients (APIs) can be prepared in many different solid forms 

and phases that affect their physicochemical properties and suitability for oral dosage forms. The 

development and commercialization of dosage forms require analytical techniques that can 

determine and quantify the API phase in the final drug product. 13C solid-state NMR (SSNMR) 

spectroscopy is widely employed to characterize pure and formulated solid APIs; however, 13C 

SSNMR experiments on dosage forms with low API loading are often challenging due to low 

sensitivity and interference from excipients. Here, fast MAS 1H SSNMR experiments are shown 

to be applicable for the rapid characterization of low drug load formulations. Diagnostic 1H 

SSNMR spectra of APIs within tablets are obtained by using combinations of frequency-

selective saturation and excitation pulses, 2D experiments and 1H spin diffusion periods. 

Selective saturation pulses efficiently suppress the broad 1H SSNMR signals from the most 



www.manaraa.com

21 

 

commonly encountered excipients such as lactose and cellulose, allowing observation of high-

frequency API 1H NMR signals. 1H SSNMR provides a one to three orders of magnitude 

reduction in experiment time compared to standard 13C SSNMR experiments, enabling 

diagnostic SSNMR spectra of dilute APIs within tablets to be obtained within a few minutes. The 

1H SSNMR spectra can be used for quantification provided calibrations are performed on a 

standard sample with known API loading.  

Introduction 

Active pharmaceutical ingredients (APIs) exist in numerous distinct solid phases (e.g., 

polymorphs, cocrystals, salts, amorphous dispersions, etc.) and their physicochemical properties 

determine the performance of the API within solid dosage forms such as tablets.1–3 13C cross-

polarization magic angle spinning (CPMAS) solid-state NMR (SSNMR) spectroscopy is widely 

applied for the identification, characterization, and quantification of pure and formulated solid 

APIs.4–7 However, the intrinsically poor sensitivity of natural isotopic abundance 13C SSNMR 

spectroscopy and the low concentration of APIs (typically 2 to 35 wt.%) often make it 

challenging to detect and characterize APIs in dosage forms. Prior 13C SSNMR studies of 

formulated drug products have shown that 13C SSNMR spectra diagnostic of the API phase can 

be acquired even for API loadings down to ca. 1 wt.% in favorable cases.7–11 However, it is well 

known that APIs and organic solids can have long 1H longitudinal relaxation times (T1) on the 

order of hundreds of seconds.12–16 APIs with long 1H T1 will have substantially reduced 

sensitivity for 13C SSNMR and it is challenging or impossible to study such APIs by 13C 

SSNMR in formulations with low drug loads. Additionally, excipient materials in the 

formulation give rise to NMR signals that overlap/interfere with those from the API. Interference 

is especially problematic for 1H and 13C SSNMR experiments because most excipients are 

organic materials.17,18 Alternatively, NMR signals from the API can be selectively detected by 



www.manaraa.com

22 

 

probing NMR-active elements such as fluorine,19,20 nitrogen,17,21 sodium,22 and chlorine18,23 that 

are exclusive to the API. Unfortunately, these NMR experiments are often infeasible because of 

poor sensitivity and/or absence of these elements in the API.  

Dynamic nuclear polarization (DNP)24–26 and fast magic angle spinning (MAS)27 are 

often employed to enhance the sensitivity of SSNMR experiments by orders of magnitude. DNP 

has enabled 13C, 15N, and 35Cl SSNMR experiments on a range of pure and formulated 

APIs.17,23,26,28,29 DNP is especially helpful for NMR experiments on APIs with long 1H T1.
30,31 In 

addition to requiring specialized hardware, DNP typically involves cryogenic sample 

temperatures and methods for doping the sample with stable radicals, which may cause 

unanticipated changes in the solid form of an API.32 The achievable DNP sensitivity 

enhancements are also highly sample dependent.17,23,26,28 

Fast MAS increases the sensitivity of SSNMR by providing access to high resolution 1H 

SSNMR spectra and/or enabling proton detection of heteronuclei.27,33,34 Fast MAS and/or 

homonuclear decoupling (i.e., CRAMPS) are routinely used to obtain 1H SSNMR spectra of pure 

APIs.4,5,34–40 Brown and co-workers applied CRAMPS double-quantum single-quantum (DQ-

SQ) 1H-1H 2D NMR experiments to differentiate hydrated and anhydrous forms of an API in a 

dosage form of unspecified API loading.41 They also showed fast MAS DQ-SQ experiments can 

detect and resolve minor polymorphic forms within mixtures of pure APIs down to a loading of 1 

wt.%.42 Zhou and Rienstra have previously applied fast MAS and proton detection to obtain 2D 

1H-13C HETCOR spectra of an ibuprofen tablet with high API loading (ca. 65 wt.%).43 However, 

proton detected 2D 1H{13C} SSNMR experiments are unlikely to provide significant gains in 

sensitivity as compared to direct detection 1D 13C CPMAS SSNMR with large diameter rotors.  
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Here, we investigate the feasibility of using fast MAS 1H SSNMR experiments (νrot ≥ 50 

kHz) to rapidly detect and characterize dilute APIs in commercial and model dosage forms. To 

the best of our knowledge, fast MAS 1H SSNMR spectroscopy has not been demonstrated as a 

method to detect APIs in realistic dosage forms with low drug loads. 1H NMR experiments 

exploiting combinations of selective excitation (SE) pulses, selective saturation pulses (SSPs) 

and spin diffusion (SD) elements effectively suppress 1H NMR signals from the abundant 

excipients and allow 1H NMR signals from the APIs in the formulations to be selectively 

detected. Comparison of fast MAS 1H and traditional 13C CPMAS SSNMR spectra shows that 

1H SSNMR typically provides an order of magnitude reduction in experiment time. 1H solid-state 

NMR experiments on polymorphs and model formulations demonstrate that 1H solid-state NMR 

experiments can be used to detect different solid drug forms. The enhanced NMR sensitivity 

provided by 1H SSNMR is shown to be useful for experiments on formulations with low API 

loading and APIs that have long 1H longitudinal relaxation times (T1).  

Experimental  

Sample preparation  

Pure API samples, lactose monohydrate, magnesium stearate, and microcrystalline 

cellulose (MCC) were purchased from Sigma-Aldrich and used without further purification. 

Commercial tablets of mecl (All Day Less Drowsy Dramamine-brand, 25 mg API dose, 

manufactured by Medtech Products Inc.), phenaz (Azo-brand, 97.5 mg API dose, manufactured 

by i-Health Inc.), phenyl (Sudafed PE-brand, 10 mg API dose, manufactured by McNeil 

Consumer Healthcare) were purchased from CVS Pharmacy. The API wt.% in the commercial 

tablets was determined by dividing the reported API dose by the total measured mass of the 

tablet. (Table S1) Polymorphs of mexi were prepared from the as received mexi-I according to 

previously reported syntheses,18,44 with some slight modifications. Mexi-II: 100 mg of mexi-I 
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dissolved in ca. 2 mL of methanol and mexi-II was slowly recrystallized over a period of 5 days. 

Mexi-III: 100 mg of mexi-I was heated at 160 °C in an oven for 2 hours. Model formulations 

were prepared for pheny (20.8 mg pheny, 276.8 mg MCC) and mexi (29.8 mg mexi-I, 5.81 mg 

mexi-III, 75.9 mg MCC) by thoroughly mixing the constituent powders in a vortex mixer for 5 

minutes. Polymorphs of theo were prepared from the as received commercial sample of theo-II 

according to previously reported syntheses.32,45 theo-M was synthesized by slowly recrystallizing 

100 mg of theo-II in an excess of water. theo-I was obtained by a modified procedure. Normally, 

theo-I is obtained by holding theo-II at 270°C for 2 hours,45 however, with this procedure theo-II 

was typically obtained. Instead, theo-I was synthesized by holding theo-M at 270 oC for 2 hours. 

A model formulation of theo was prepared by thoroughly mixing 5 mg of theo-I, 9.8 mg of theo-

II and 84.9 mg of MCC. 2 wt. %, 4 wt. % and 6.1 wt. % mixtures of theo-II in MCC were 

prepared by using the following masses for each component. 2 wt. % theo-II (2 mg theo-II in 

97.8 mg MCC). 4 wt. % theo-II (4 mg theo-II in 96.2 mg MCC). 6.1 wt. % theo-II (6.1 mg theo-

II in 93.8 mg MCC).  

Solid-state NMR spectroscopy  

All samples were gently ground into a powder using a motor and pestle prior to packing 

into 1.3 mm or 4 mm zirconia rotors for solid-state NMR experiments. 1H and all 13C SSNMR 

experiments were performed on a 400 MHz (B0 = 9.4 T) Bruker Avance III HD spectrometer 

equipped with broadband double resonance HX 1.3 mm fast MAS and 4 mm HX probes. 

Additional 1H solid-state NMR (SSNMR) experiments were performed on a 800 MHz (B0 = 18.8 

T) Bruker Avance III spectrometer at the National High Field Magnetic Laboratory (NHFML) in 

Tallahassee, Florida equipped with a Bruker triple resonance HCN 1.3 mm fast MAS probe. 1H 

SSNMR spectra were indirectly referenced to neat tetramethylsilane (δiso = 0 ppm) using 

adamantane (δiso = 1.82 ppm) and the unified scale in the IUPAC standard.46
  13C chemical shifts 
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were referenced to neat tetramethylsilane (δiso = 0 ppm) by setting the high frequency peak of 

adamantane to 38.48 ppm.  All SSNMR spectra were processed using the TopSpin v3.5 software 

package. 

1H SSNMR experiments at both fields were performed with MAS frequencies of 50 kHz. 

See Figure S1 for the pulse sequences used in this work. Rotor-synchronized 1H spin echo (400 

MHz) or DEPTH47 (800 MHz) experiments were used to minimize background signals from the 

probes and rotor caps in 1D NMR spectra. 1H longitudinal relaxation time constants (T1) were 

measured with saturation recovery spin echo pulse sequences. The recycle delay for 1D NMR 

experiments was typically set to 1.3 or 5 times the 1H T1 measured for the pure API.  

2D 1H–1H spin diffusion (SD) NMR spectra were collected with (or without) selective 

saturation pulses (SSPs) and a spin diffusion period (Figure S1). 2D SD NMR spectra were 

typically obtained with 4 scans per increment, t1 was incremented in steps of 40 s (25 kHz 

indirect dimension spectral width). Typically 130 to 160 t1 increments were acquired, 

corresponding to respective acquisition times of 2.6 to 3.2 ms in the indirect dimension. Total 

experiment times are indicated on the various Figures. SSPs were applied on resonance with 

common excipient molecules (at ca. 3.5 ppm) saturated nearly all of the excipient 1H NMR 

signals with minimal effect on the high frequency NMR signals of the APIs (Figure S2). The 

SSP pulse length was 6 ms in all cases and the power and z-filter delay following the SSP (ZF) 

was directly optimized on each sample. ZF was between 0.020 ms and 20 ms depending on the 

sample. The SSP typically used RF fields of less than 1 kHz. The SSP was typically applied at an 

offset of 3 – 4.5 ppm, near to the peak maximum of MCC. However, at lower field, the SSP 

offset needs to be carefully optimized because 1H spin diffusion is likely more rapid at lower 

field (see Figure S19 for an example of optimization of the SSP offset). For 9.4 T experiments on 
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mexi an alternative SSP condition was used: three 6 ms saturation pulses were separated by SSP 

diffusion periods (SSP) of 20 ms were applied at a transmitter frequency of ca. 2.9 ppm. The 1D 

and 2D SD NMR experiments typically used spin diffusion delays between 5 and 70 ms. 1D 

selective-excitation spin diffusion (SE-SD) experiments were conducted at B0 = 18.8 T with a 

600 μs low-power rectangular selective excitation pulse (ca. 400 Hz RF field) applied on 

resonance with high frequency API signals. The 1D SE-SD NMR spectra were obtained with the 

same pulse sequence as the 2D 1H–1H NOE experiments except without any evolution in t1 

(Figure S1C). For experiments on theo at 9.4 T DANTE pulse trains48,49 were used for 

frequency-selective excitation. The DANTE excitation pulses consisted of a train of 15 0.2 s 

pulses each separated by two rotor cycles (40 s). The rf field of the 0.2 s pulses was 85 kHz.  

All 13C MAS (νrot = 8 kHz) SSNMR experiments were performed at 9.4 T with a triple 

resonance Bruker HXY probe configured in double resonance mode to maximize sensitivity. 

MAS 13C SSNMR spectra were obtained with cross-polarization to enhance sensitivity.50 13C 

SSNMR spectra were acquired with the CP-TOSS sequence with a 243-step phase cycle.51,52 The 

1H CP spin lock pulse was linearly ramped between 90% and 100% of the spin lock RF field to 

broaden the Hartmann-Hahn match condition.53 The length of the contact pulse was between 1.5 

and 2.5 ms and was optimized on each sample. SPINAL-64 heteronuclear decoupling54 with an 

RF field of ca. 80 kHz was used for all 13C NMR experiments 

Powder X-ray diffraction  

Powder X-ray diffraction was used to confirm that the mexi polymorph synthesis was 

successful (Figure S3). Powder X-ray Diffraction (PXRD) patterns of all of the samples were 

obtained using a Rigaku Ultima U4 XRD, with a CuKα source (λ = 1.540562 Å). A 2θ range of 
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5º to 50º was scanned in stepwise fashion (step size = 0.05º, dwell = 2 seconds) for a total 

acquisition time of ca. 20 mins per sample. 

 

 

Figure 1. Molecular structures of (A-B) common excipient molecules and (C-H) representative 

small molecules/APIs used in this work. 1D 1H SSNMR spectra of each compound are shown in 

the right column. All 1H SSNMR spectra were obtained with a 50 kHz MAS frequency at B0 = 9.4 

T. 
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Results and discussion 

Fast MAS 1H SSNMR spectra of representative APIs and typical excipients    

 Figure 1 shows the molecular structures of representative APIs investigated in this study. 

Molecular structures are also shown for commonly encountered excipients such as 

microcrystalline cellulose (MCC) and lactose. These excipients are the major components of 

many tablets.  Figure 1 and Figure S4 shows 1H SSNMR spectra of the APIs and excipients 

obtained with a MAS frequency (rot) of 50 kHz and B0 = 9.4 T (400 MHz 1H Larmor 

frequency). Inspection of Figure 1 shows that MCC and lactose give rise to relatively broad and 

featureless 1H NMR spectra that span a frequency range of ca. 0 to 7 ppm. The 1H SSNMR 

spectra of MCC and lactose are relatively featureless because the hydroxyl protons and alkyl 

protons have similar chemical shifts. On the other hand, many of the APIs have well-resolved 

high frequency 1H NMR signals that are well separated from the excipient 1H NMR signals. 

These high-frequency 1H NMR peaks typically arise from hydrogen atoms in amine, ammonium, 

and carboxylic acid functional groups.33,37,40–42 The high frequency 1H NMR signals can be used 

to observe the 1H SSNMR spectra of the APIs within formulations. 
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Figure 2. MAS 1H SSNMR spectra of pure mecl and a commercial 12.5 wt.% mecl tablet acquired 

at B0 = 18.8 T with νrot = 50 kHz. A) 1D DEPTH NMR spectra. B), C) 2D 1H SD NMR spectra 

acquired with a selective saturation pulse applied at 3.5 ppm and a 20 ms spin diffusion time. D) 
1H NMR spectra extracted from rows of the 2D NMR spectra (dashed lines in B and C).  

 

Fast MAS 1H SSNMR spectra of commercial Dramamine® tablets  

1D 1H SSNMR experiments on the antihistamine API meclizine dihydrochloride (mecl, 

Figure 1) and a commercial Dramamine® Less Drowsy tablet with 12.5 wt.% mecl loading 

illustrate the challenges of obtaining 1H SSNMR spectra of an API within a low drug load 

formulation (Figure 2A). A MAS frequency of 50 kHz is sufficient to provide a high resolution 

1H SSNMR spectrum of the pure mecl at B0 = 18.8 T. The 1D 1H NMR spectra were obtained 

with a DEPTH pulse sequence47 to suppress probe background NMR signals. The 18.8 T 1H 

SSNMR spectrum of the mecl tablet is dominated by the intense NMR signals from the excipient 

molecules, namely MCC. The intense MCC signals obscure most of the mecl signals; however, 

the 1H NMR signal of the ammonium group of mecl is resolved at 12.7 ppm (Figure 2A, inset). 

Protons with high chemical shifts are often involved in hydrogen bonding and are diagnostic of 

the solid form.33,37,40–42,55 The chemical shift of the ammonium group is identical in the tablet and 

pure API, immediately suggesting the same polymorph is present in both samples. Additional 1H 
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NMR signals from the API may be required for phase identification, especially for APIs that 

could form additional phases.  

Combinations of frequency-selective saturation and excitation pulses, 2D NMR spectra, 

and spin diffusion periods can be used to eliminate NMR signals from the excipients and obtain 

diagnostic 1H SSNMR spectra of the API in formulations. Under fast MAS, homonuclear 1H spin 

diffusion is slowed and different 1H chemical shifts can be suppressed with selective saturation 

pulses (SSPs), typically low-power, long duration pulses (1 to 30 ms).56–58 The most commonly 

encountered excipient molecules have similar 1H chemical shifts in the solid-state, centered 

around 3-5 ppm (Figure 1). SSPs applied in this region will eliminate signals from most 

excipients. Note that the broad, overlapped 1H SSNMR signals of MCC will lead to rapid 1H spin 

diffusion amongst the 1H spins in MCC, allowing the SSP to efficiently saturate the entire MCC 

signal. High frequency acid or amine peaks from APIs are typically between 8 and 20 ppm33,37,40–

42 and are minimally affected by SSPs targeting the excipient resonances (Figure S2 and S4). 

Note that most APIs are marketed as free acids, salts, or cocrystals;59 therefore, APIs will usually 

possess amine, ammonium, or acid functional groups that give rise to high frequency 1H 

chemical shifts. 

2D 1H spin diffusion experiments  

1D and 2D 1H spin diffusion (SD) NMR experiments36,60 enhance resolution and provide 

access to additional 1H chemical shifts of the API (see Figure S1 for pulse sequences). 2D 1H SD 

NMR experiments with SSPs were performed on pure mecl and the mecl tablet (Figures 2B and 

2C). 2D 1H SD NMR spectra of the mecl tablet could also be obtained without SSPs because the 

ammonium peak is well resolved (Figures S6 and S7). However, SSPs are required to reduce 

excipient signals in most tablets. 1H spin diffusion occurs during the delay (τSD) between the last 

two π/2 pulses, producing additional API peaks in the rows of the 2D NMR spectra. Spin 
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diffusion only occurs between 1H nuclei that are proximate,61,62 therefore, the NMR spectrum of 

the mecl tablet extracted from the ammonium peak row at 12.7 ppm will only show 1H NMR 

signals from the API (dashed lines in Figure 2). Figure 2D clearly shows that the same API phase 

is present in pure mecl and the mecl tablet, in agreement with 13C SSNMR experiments (see 

below).  The 1H SSNMR spectra obtained from the rows of the 2D spin diffusion spectra are 

distinct from the 1H spin echo NMR spectra because peak intensities depend upon the spin 

diffusion rates between the high frequency peak and the lower frequency peaks (cf. Figures 2A 

and 2D). For isolated spins, spectral spin diffusion rates are determined by the strength of the 

dipolar coupling of the two coupled spins and the peak overlap integral evaluated at zero 

frequency. The peak overlap integral is approximately inversely proportional to the square of the 

frequency difference.63,64 For example, the ammonium peak shows rapid spin diffusion to the 

positively shifted aromatic 1H NMR signals because the peaks have similar shifts and partially 

overlap at their baseline. On the other hand, the methyl and ammonium cross-peak have a low 

intensity and the cross-peak is negative. 1H spin diffusion between the methyl protons and 

ammonium groups is likely slow because methyl and ammonium peaks are well separated (∆δ ≈ 

11 ppm = 8.8 kHz at 18.8 T). Conventional ZQ spin diffusion (1H-1H flip-flop) causes positive 

cross-peaks. We therefore speculate that the negative ammonium-methyl cross-peak could be 

caused by a double-quantum nuclear Overhauser effect (DQ-NOE) and this will be the subject of 

future study.  

Notably, the 2D SD 1H NMR spectra were obtained in a few hours and experiment times 

could be further accelerated by reducing the spin diffusion time to focus the observed direct 

dimension signal into fewer API peaks or by acquiring fewer increments in the 2D experiment 

(which will cause reduced resolution in the indirect dimension). The data shown in Figure 2 were 
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acquired at B0 = 18.8 T, but 2D 1H SD NMR experiments with SSPs were also successful at B0 = 

9.4 T (Figure S8). The selectivity of the SSPs for excipient saturation is generally better at high 

field because 1H spin diffusion is slowed by improved 1H shift dispersion. 

1D spin diffusion experiments 

If the chemical shift of a resolved API 1H NMR signal is known from prior 

characterization of pure API forms or from 1D 1H NMR experiments on the tablet, 1D selective 

excitation spin diffusion (SE-SD) NMR experiments can be performed (Figure S1C). In the 1D 

SE-SD NMR experiments on mecl, the ammonium peak at 12.7 ppm was selectively excited 

with a low-power 600 s π/2 pulse. The transverse 1H ammonium magnetization was then 

reconverted to longitudinal magnetization by a high-power broadband π/2 pulse, which 

simultaneously saturates the other 1H NMR signals. The longitudinal 1H ammonium 

magnetization then undergoes spin diffusion for a fixed period of time, leading to the appearance 

of additional 1H chemical shifts, which can then be read by a final broadband π/2 excitation 

pulse.  

The 1D SE-SD method produces a high quality 1H SD NMR spectrum of the mecl tablet 

in only 30 minutes (Figure 3A). The 1D 1H SE-SD NMR spectrum of the mecl in the tablet 

obtained with a 70 ms spin diffusion time has a high signal-to-noise (SNR) ratio of ca. 44 for the 

characteristic ammonium peak, corresponding to a sensitivity (S) of 8.1 min–1/2 (S = SNR × t–1/2). 

Different pulse shapes or excitation schemes57,58,65 could likely improve the selectivity and 

efficiency of the SE pulses. For example, in later experiments on theo, simple DANTE 

schemes48,49 were used for efficient frequency-selective excitation.  
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Comparison to 13C solid-state NMR spectroscopy 

 1H SSNMR experiments provide much better sensitivity than conventional 13C CPMAS 

NMR experiments. A 13C CPMAS spectrum of the mecl tablet was obtained with a 4 mm rotor 

and had a SNR of 17 after 2 hours of signal averaging (Figure 3C and Figure S9). In comparison, 

a 1D SE-SD 1H SSNMR spectrum with comparable SNR could theoretically be obtained 16 

times faster (in 7.5 mins). For the 13C SSNMR experiments S = 1.6 min–1/2, while the 1D 1H 

SSNMR spectrum of the mecl tablet had a S of 63 min–1/2 and the 1D 1H SE-SD spectrum had a 

S of 8.1 min–1/2 (Figure 3A and Figure S9). Therefore, 1D 1H SSNMR offers 5– to 39–fold 

higher sensitivity for mecl, corresponding to 1 to 3 orders of magnitude reductions in experiment 

time as compared to 13C CPMAS. Note that the sensitivity of 1D SE-SD experiments could be 

further increased by reducing the 1H spin diffusion time to focus the NMR signal into fewer 

peaks, however, this would come at the expense of loss of intensity at other 1H chemical shifts. 

 
Figure 3. 1D 1H SE-SD and 13C CPMAS SSNMR spectra of A), C) pure mecl and a mecl tablet 

and B), D) pure phenaz and a phenaz tablet. The dashed line indicates the offset of the SE excitation 
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pulse. Total experiment times are indicated. Spin diffusion times were 70 ms and 20 ms for mecl 

and phenaz, respectively. The 1H SSNMR spectra were acquired at B0 = 18.8 T with νrot = 50 kHz 

and 1.3 mm rotors. 13C CPMAS spectra were obtained at B0 = 9.4 T with νrot = 8 kHz and 4 mm 

rotors. Experiment time (t), signal-to-noise ratio (SNR) and sensitivity (S) are indicated for each 

spectrum. The asterisks denote the peaks used for determination of (SNR) and calculation of S. 

 

Characterization of other commercial formulations  

Fast MAS 1H SSNMR experiments were performed on other commercial API 

formulations to investigate the generality of our approach. 1H and 13C SSNMR experiments on 

the API phenazopyridine hydrochloride (phenaz) and a commercial tablet with 68 wt.% API 

loading are summarized in Figures 3B and 3D (also Figures S10 and S11). Diagnostic 1H 

SSNMR spectra of phenaz in the tablet were obtained in a few minutes with the 1D SE-SD pulse 

sequence (Figure 3B). The similarity of the 1D SE-SD spectra of the pure phenaz and the phenaz 

tablet suggests the same API phase is present in both. The 1D SE-SD spectrum of phenaz in the 

tablet showed a SNR of 160 after 4.5 minutes of signal averaging (S = 75 min–1/2), demonstrating 

the high sensitivity provided by 1H SSNMR spectroscopy. Comparing the 1D 1H SE-SD 

spectrum and the 13C CPMAS spectrum of the phenaz tablet shows that 1H SSNMR provides an 

order of magnitude improvement in sensitivity, corresponding to a 100-fold reduction in 

experiment time. For example, consider a hypothetical 2 wt.% phenaz tablet: only 20 minutes 

would be required to obtain a 1D SE-SD 1H SSNMR spectrum with a SNR of ca. 10, while ca. 

4.5 days would be required to obtain a 13C CPMAS with similar SNR. 

The tablet Sudafed® PE containing 7 wt.% of the API phenylephrine hydrochloride 

(pheny) was also studied (Figure S12-S15). This tablet is challenging to characterize because it 

has a low API loading, pure pheny has a relatively long 1H T1 of 18 s, and the API protons are 

present in a secondary ammonium group (C2NH2
+) containing 1H nuclei that are strongly dipolar 

coupled, leading to broadening of the high frequency API 1H NMR signals. The secondary 

ammonium protons also have chemical shifts at ca. 10 ppm, close to the 1H shifts of many 
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excipients. The overlapped 1H NMR signals make it challenging to selectively saturate the 

excipients, resulting in reduced intensity of the high-frequency API signals. Despite these 

challenges, 2D 1H SSNMR spectra of the pheny tablet were obtained in 7 hours at B0 = 9.4 T, 

while a 13C SSNMR spectrum of similar quality was obtained after 16 hours of signal averaging 

(Figures S15). Comparison of the 13C SSNMR spectra of pure pheny and the tablet suggest that 

the API is likely amorphous in the tablet. This is reflected in the distinct appearance of the 1H 

SSNMR spectra of the pheny tablet and pure pheny. In contrast, a model 7 wt.% pheny 

formulation made of a physical mixture of crystalline pheny and MCC yielded 1H SSNMR 

spectra consistent with the crystalline phase (Figure S14). The experiments on pheny illustrate 

that 1H SSNMR experiments are challenging when the 1H NMR spectrum of the API suffers 

from overlap of many 1H NMR signals and does not possess a well-resolved, high-frequency 1H 

NMR signal. In such cases 13C CPMAS will likely be the preferred NMR method for 

interrogating the API phase within the tablet.  

 

Figure 4. 1H and 13C CPMAS SSNMR spectra of theophylline form I (theo-I), theophylline 

monohydrate (theo-m), and theophylline form II (theo-II). 1H SSNMR spectra were obtained with 

a 50 kHz MAS frequency at B0 = 9.4 T. 13C SSNMR spectra were obtained with an 8 kHz MAS 

frequency at B0 = 9.4 T. Vertical dashed lines are guides for the eye to illustrate the differences in 

isotropic chemical shifts. 
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Detection of polymorphic forms 

 It is well known that both 1H chemical shifts37,39,40,55,66,67 and SD rates33,35,66 are very 

sensitive to differences in structure. Therefore, 1H SSNMR should be an ideal technique to detect 

different API phases within formulations. To test this hypothesis, polymorphs of theophylline 

(theo) and mexiletine hydrochloride (mexi) and model formulations were characterized by 1H 

SSNMR. In addition to demonstrating the utility of our techniques to detect distinct solid phases 

in formulations, a critical aspect of pharmaceutical product development, these case studies 

provide examples of potential challenges for 1H SSNMR (i.e., slow 1H longitudinal relaxation 

and poor separation of the high frequency API peaks from the excipients), and methods that can 

be used to overcome them. 

Characterization of Theophylline polymorphs 

 Theo has several stable crystal forms and a monohydrate  form, all of which are readily 

accessible by simple recrystallization procedures.32,45 MAS 1H and 13C SSNMR spectra of 

theophylline form II (theo-II), theophylline form I (theo-I) and theophylline monohydrate (theo-

m) are shown in Figure 4. The similarity of the 1H and 13C SSNMR spectra to those previously 

reported for the different polymorphs confirms the identity and purity of each polymorph.32 The 

1D 1H SSNMR spectra of the different theo forms illustrates that all forms are easily 

distinguished on the basis of the distinct 1H chemical shifts observed for the amine (12-15 ppm) 

and methine (CH) protons (7.5-8.5 ppm). Baias et al. have noted that the differences in amine 1H 

chemical shift occurs because of the distinct hydrogen bonding motifs encountered in the 

different crystal forms.39 The single crystal X-ray structure of theo-II shows the NH group forms 

a hydrogen bond to the nitrogen atom in the five-membered purine ring of an adjacent 

theophylline molecule.45 The single crystal X-ray structures of theo-m and theo-I both show the 

NH group forms a hydrogen bond to a carbonyl group of an adjacent theophylline molecule.45  
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1H T1 measurements were performed on the different pure theo forms with both slow (rot 

= 8 kHz) and fast MAS (rot = 50 kHz) frequencies. Under slow MAS each 1H NMR signal 

showed a similar mono-exponential T1 because 1H spin diffusion is rapid between all 1H spins 

(Figure S16). The 1H T1 was ca. 53 s for theo-I and 64 s for theo-II (Table S2). Under fast MAS 

each 1H NMR signal had a distinct T1; for both theo forms the T1 of the methyl 1H was on the 

order of 60 s, while the T1 of the high-frequency amine was much longer and between 300 – 460 

s for the different forms (Table S3). The long 1H T1 for the amine 1H of theo arises with fast 

MAS because 1H spin diffusion has been slowed and there are likely no dynamic motions at the 

correct frequencies to cause longitudinal relaxation. Note that for the other compounds examined 

there were only slight differences in T1 measured for the different 1H NMR signals. Fast MAS 

could reduce the sensitivity of SD 1H SSNMR experiments where the amine signal will be 

excited because the amine 1H T1 of several hundred seconds will dictate the recycle delay.  

Previously, Taulelle and Nishiyama showed that RFDR recoupling can be applied to 

accelerate 1H spin diffusion under fast MAS and reduce the differences in 1H T1 between 

resolved 1H NMR signals.68 Alternatively, spin-lock pulses can also be used to accelerate spin 

diffusion when there is a large frequency difference between peaks.69 Here a low power 1H spin-

lock pulse (ν1(
1H) ≈ 15 kHz) with a duration of a 1.8 ms was used to enable 1H spin diffusion 

across the entire theo 1H NMR spectrum and transfer magnetization from the methyl 1H to the 

amine and methine 1H. The spin-lock pulse shortens the effective T1 of high frequency theo 

amine 1H NMR signals from several hundred seconds to less than 90 seconds (Table S3). 

Therefore, a 1H broadband π/2 pulse, spin-lock pulse, flip-back π/2 pulse block was inserted 

prior to any SE pulses in the subsequent 1H SSNMR experiments on theo (Figure S1). For 1D 

SE-SD experiments on theo a spin-lock pulse was used to promote 1H spin diffusion in lieu of 
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the usual longitudinal magnetization storage period (Figure S1E). Spin-lock pulses used to 

accelerate 1H spin diffusion in theo were between 600 s and 1.8 ms in duration. 

 

Figure 5. 1H and 13C SSNMR spectra of a physical mixture of 85 wt.% MCC, 10 wt.% theo-II and 

5 wt.% theo-I. 1H spin echo spectra recorded A) without and B) with SSP on resonance with MCC. 

(C-F) 1D SE-SD 1H SSNMR spectra with the SE pulse on resonance with the high frequency 

amine 1H NMR signal of (C, D) theo-I or (E, F) theo-II.  1H SSNMR spectra in D) and F) were 

obtained with a 1.8 ms spin-lock pulse following the SE pulse to promote 1H spin diffusion. Spectra 

in C) and E) were recorded with a 20 μs spin-lock pulse to minimize 1H spin diffusion. 1H SSNMR 
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spectra were obtained with a 50 kHz MAS frequency at B0 = 9.4 T. 13C SSNMR spectra were 

obtained with an 8 kHz MAS frequency at B0 = 9.4 T. Experiment times (t), signal-to-noise ratios 

(SNR) and sensitivity (S) are indicated. The asterisks denote the peaks used for determination of 

(SNR) and calculation of S. 

 

NMR experiments were performed on mixtures of theo solid forms and MCC to 

demonstrate the potential of fast MAS 1H SSNMR to rapidly detect different solid API forms 

when they are dilute within a formulation. A mixture consisting of 85 wt.% MCC, 10 wt.% theo-

II and 5 wt.% theo-I was used in these experiments. This mixture mimics a scenario where there 

is a total drug load of 15 wt.% in the formulation and one-third of the API (theo-II) has 

undergone a transition to a secondary API phase (theo-I). In the 1D 1H SSNMR spectrum 

obtained without SSPs, the high frequency amine signals of both theo-I and theo-II are obscured 

(Figure 5A). Acquisition of a 1D 1H SSNMR spectrum with SSPs helps suppress the MCC 

signals and clearly shows both amine and methine 1H NMR signals for both theo forms (Figure 

5B).  

1D SE-SD NMR experiments were also performed with DANTE SE pulses on resonance 

with the amine signal of theo-I or theo-II (Figures 5C-5F). The 1D SE-SD 1H SSNMR spectra 

obtained with a minimal spin diffusion time only show the respective amine chemical shifts 

(Figures 5C and 5E), while those recorded with a 1.8 ms spin-lock pulse to promote 1H spin 

diffusion show additional chemical shifts from the methine and methyl groups (Figures 5D and 

5F). The 1H chemical shifts observed in the 1D SE-SD NMR spectra exactly match those 

observed in the 1H NMR spectra of the corresponding pure phases (Figure 4), confirming the 

identity of the theo phases in the mixture. 

Comparing the sensitivity of 13C and 1H SSNMR experiments on the theo-MCC mixture 

shows that 1H SSNMR once again provides far superior sensitivity. After 5 hours of signal 
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averaging the 13C CPMAS spectrum of the mixture shows SNR of about 14 and 7 for 

characteristic 13C peaks of theo-II and theo-I, respectively. These SNR values correspond to a 

sensitivity of 0.8 min–1/2 and 0.4 min–1/2 for theo-II and theo-I, respectively. Note that the low 

sensitivity of 13C CPMAS for theo primarily arises because of its relatively long 1H T1 which 

requires a long recycle delay over 1 minute to be used for optimal sensitivity. Despite the long 

1H T1, 
1H SSNMR spectra of both theo forms within the mixture can be obtained in 15 – 30 

minutes with a SNR of over 30. The sensitivity of the 1H SSNMR spectra recorded without any 

spin diffusion is 13 min–1/2 and 5 min–1/2 for theo-II and theo-I, respectively. The sensitivity 

provided by 1H SSNMR is about 16 times better than 13C CPMAS, corresponding to a two order 

of magnitude reduction in experiment time.  This is why high quality 1H NMR spectra are 

obtained in only 15-30 minutes each, while the 13C CPMAS spectrum required hours of signal 

averaging.  

The SSNMR experiments on the theo-MCC mixture illustrate why it is challenging to 

characterize formulations with low API loading by conventional 13C CPMAS. For example, 

consider a scenario where the theo-II loading is only around 2 wt.%, then ~2.5 days of signal 

averaging would be required to obtain a 13C SSNMR spectrum with a SNR of 10. On the other 

hand, in only 30 minutes a 1H SSNMR spectrum of a 2 wt.% mixture of theo-II in MCC with a 

SNR of about 18 was obtained (Figure S17). This example demonstrates the advantages of fast 

MAS 1H SSNMR for probing formulations with very low API loading and/or when the API 

possesses a long 1H T1. 

Detection of Mexiletine polymorphs  

Three polymorphic forms of mexiletine hydrochloride (mexi), referred to as mexi-I, 

mexi-II, and mexi-III, were also prepared and characterized by 1H SSNMR. These polymorphs 

have previously been characterized with X-ray diffraction as well as 13C and 35Cl SSNMR.18,44 
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The distinct 1D 1H SSNMR spectra of the mexi polymorphs at B0 = 9.4 T suggests that 1H NMR 

should be useful to distinguish and quantify the different forms (Figure 6 and Figure S18). A 

model mexi formulation was prepared by mixing 5.2 wt.% mexi-III, 26.7 wt.% mexi-I, and 68.0 

wt.% MCC (total API load of 32 wt.%). The model mexi formulation mimics the composition of 

a tablet with 16% of the API converted to a secondary phase (mexi-III).  

The mexi formulation is challenging to study by 1H SSNMR because the primary 

ammonium protons of mexi have chemical shifts of ca. 8 ppm, near to the 1H shifts of MCC. 

Therefore, SSP conditions that can completely saturate MCC signals and minimally perturb the 

mexi signals are required. Optimization of the SSP offset for mexi-I, mexi-III and MCC at B0 = 

9.4 T showed that with a single SSP, the MCC signals can only be saturated when the SSP is 

applied at offsets of ca. 4.7 to 3.7 ppm, which falls within the MCC lineshape (Figure S19A). 

However, at these offsets the 1H NMR signals from mexi-I and mexi-III are also partially 

saturated, likely because the mexi 1H SSNMR spectra are poorly resolved at 9.4 T and 1H spin 

diffusion rapidly equilibrates polarization across the spectrum. 
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Figure 6.  (A-D) 1D 1H spin echo SSNMR spectra of MCC, the model mexi formulation, mexi-

III and mexi-I. The mexi formulation consists of a physical mixture of 5.2 wt.% mexi-III, 26.7 

wt.% mexi-I, and 68.0 wt.% MCC. Vertical dashed lines are guides for the eye to illustrate 

differences in 1H chemical shifts for the two mexi polymorphs. (E-H) 2D 1H SD NMR spectra of 

of MCC, the model mexi formulation, mexi-III and mexi-I. All spectra were recorded with a 20 

ms spin diffusion mixing time and three SSPs applied at an offset of 2.8 ppm. (I-L) 1H SSNMR 

spectra extracted from the indicated rows of the 2D 1H SD NMR spectra. Only 1H NMR signals 

from mexi-III are visible from the formulation. 

 

Alternatively, application of three SSPs, each separated by a 20 ms z-filter/spin diffusion 

period, enables MCC signals to be saturated completely with SSP offsets of 2.0 to 5.0 (Figure 

S19B). 2D 1H SD NMR spectra acquired with SSP offsets below 3.0 ppm saturates the mexi-I 

and MCC signals, while mexi-III signals are still observable. 2D SD 1H NMR spectra with three 

SSPs applied at 2.9 ppm were acquired at B0 = 9.4 T from mexi-I, mexi-III, MCC and the model 

formulation (Figure 6E-H). The rows extracted from the 2D SD 1H NMR spectra at an indirect 
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dimension shift of 9.7 ppm are shown in Figure 6I-L. As expected, only NMR signals from 

mexi-III are visible in the formulation because the SSPs efficiently saturate both MCC and mexi-

I NMR signals. These results illustrate that 1H SSNMR could be useful to selectively detect 

different polymorphic forms on the basis of their response to SSPs. However, a clear drawback 

of the 1H SSNMR experiments that mexi-I NMR signals could not be observed in this case 

because they are attenuated by the SSPs required to eliminate MCC NMR signals. This 

limitation could likely be overcome by increasing the static magnetic field and/or MAS 

frequency to increase 1H resolution, reduce spin diffusion and improve the selectivity of SSPs.  

Quantification of API loading by 1H SSNMR  

Finally, the ability of 1H SSNMR to quantify API loading in a formulation was also 

tested. It has previously been demonstrated that 13C CPMAS can be used to quantify API loading 

within a formulation based upon the comparison of peak intensities.7–11 1H SSNMR experiments 

were performed on physical mixtures of theo-II and MCC with variable loading of theo-II from 2 

wt.% to 9.8 wt.% to investigate the possibility of using 1H SSNMR for quantification of APIs in 

formulations. Figure 7A shows a plot of the integrated intensity of the amine 1H NMR signal of 

theo-II measured with 1D SE-SD experiments as a function of the theo-II wt.%.  For the 

calibration experiments the recycle delay was fixed to 95 s which corresponds to 1.3 times the 

signal build-up time constant of 73 s measured for the theo-II amine signal. The SE pulse was 

placed on resonance with the theo-II amine signal and the spin diffusion spin-lock pulse was set 

to 20 s in duration to maximize sensitivity by focusing signal into the amine peak. Figure 7A 

shows that there is a linear correlation between the theo-II 1H NMR signal intensity and the theo-

II wt.% within the mixtures. Using the measured integrated intensities and the calibration 

equation, the average absolute error in the API loading was 0.36 wt.% and the average relative 
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error was 9.9% of the expected API loading (Table S4). These experiments demonstrate fast 

MAS 1H SSNMR should be quantitative, provided the 1H NMR signal response to the SSP and 

SE pulses are first calibrated on standards with known API loading.  

 

Figure 7. A) Plot of integrated intensity of the amine 1H NMR signal of theo-II on different 

mixtures with MCC. Comparison of the 1D SE-SD 1H NMR signal intensities for the 

corresponding pure APIs and for B) 10 wt.% theo-I in MCC, C) a 12.5 wt.% mecl tablet, D) a 68 

wt.% phenaz tablet. The insets show the intensity scaling required to match the integrated intensity 

of high frequency API signals of the formulation to those of the pure API. The spectra are 

normalized for differences in number of scans. Data for A), B) and D) was obtained at B0 = 9.4 T 

and C) was obtained at B0 = 18.8 T.  
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Signal intensities were also used to estimate the loading of other APIs within 

formulations. 1D SE-SD 1H NMR integrated signal intensities were compared for samples of 

pure theo-I and a 10 wt.% theo I – MCC physical mixture (Figure 7B). Based upon the integrated 

signal intensity the theo-I wt.% in the mixture was determined to be 11 wt.%, which is within 1 

wt.% of the expected value. Comparison of the mexi-III signal intensity in 2D 1H SD 

experiments yields a 6.8 wt.% loading of mexi-III in the formulation, which is close to the 

expected value of 5.2 wt.% mexi-III (Figure 6K). Quantification was also attempted with 1D SE-

SD 1H SSNMR experiments on pure and formulated mecl and phenaz (Figure 7). For the 

commercial mecl tablet an API loading of 15.0 wt.% was determined, which is within 2.5 wt.% 

of the stated mecl loading of 12.5 wt.%. Note that different 1H T1 values were measured for mecl 

in bulk and dosage forms (Table S5). All NMR spectra of mecl were obtained with recycle 

delays of 1.3×T1 for optimal sensitivity. However, there is likely some uncertainty in the 

measured T1 values and this will affect the accuracy of quantification. Quantification could be 

improved by using longer recycle delays to minimize contributions of longitudinal relaxation to 

signal differences. For the commercial phenaz tablet the API loading was measured to be 69 wt. 

% which is within 1 wt.% of the expected value of 68 wt.%. The phenaz quantification was 

performed with 1D SE-SD experiments that used recycle delays of 5×T1. We anticipate that the 

accuracy of API quantification by 1H SSNMR could be further improved by using common 

practices such as adding an internal standard to the sample,7 weighing the amount of sample 

packed into the rotor and/or limiting the sample to the central portion of the rotor to minimize rf 

homogeneity effects.  
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Conclusions 

In summary, straightforward and highly sensitive 1D and 2D fast MAS 1H SSNMR 

experiments can be used to rapidly identify the solid forms of dilute APIs within dosage forms. 

The sensitivity of 1H SSNMR greatly exceeds that of 13C SSNMR, typically enabling one to 

three order of magnitude reductions in experiment times. Diagnostic 1H SSNMR spectra of dilute 

APIs within formulations can typically be obtained in minutes, even when the API has 

unfavorable T1 relaxation times and low API loading, whereas 13C SSNMR spectra would 

require hours or days of signal averaging to obtain NMR spectra of similar SNR. 1H SSNMR can 

permit the routine detection of many APIs that have a long 1H T1 and/or APIs that are very dilute 

in a formulation. For theo and mexi the 1H SSNMR spectra of different crystalline forms are 

distinct, allowing polymorphic forms to be identified and detected on the basis of 1H chemical 

shifts or on the basis of different responses to saturation and excitation pulses. Experiments on 

theo mixtures demonstrate that 1H SSNMR spectra are quantitative after calibration on the 

individual components of the formulation.  

While many pharmaceutical samples are amenable to characterization using 1H SSNMR 

experiments, such methods may not be applicable or useful for all APIs, as was observed for 

pheny and mexi-I. In cases where the API lacks high frequency 1H NMR signals and/or has a 

poorly resolved 1H NMR spectrum, both SSPs and SE pulses will be inefficient, and it will be 

challenging to detect API 1H NMR signals from the formulation and/or obtain meaningful 

structural information about the API. However, these limitations could be overcome by 

improving 1H SSNMR resolution and reducing SD rates by using higher magnetic fields and/or 

faster MAS frequencies. Probes capable of MAS frequencies greater than 100 kHz are becoming 

widespread and should allow APIs with 1H chemical shifts below 10 ppm to be studied.27,34 

Alternatively, DQ NMR experiments can provide improved resolution and shift 
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discrimination,41,42 at the expense of reduced sensitivity. While the focus of the current work has 

been on pharmaceuticals, the methods described here should also be applicable to study other 

complex mixtures of organic solids.  
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Appendix for supporting information 

Table S1. Dosage and the API loading of the commercial tablets used in the study. 

 

Commercial Tablet Dosage/(mg) Mass of a tablet/(mg) API loading/ (w/w %) 

Mecl 25.0 201.3 12.4 

Phenaz 97.5 143.2 68.1 

Pheny 10.0 141.5 7.1 

 

 

Figure S1. Diagrams of the pulse sequences used in this work. A) SSP optimization pulse 

sequence, B) 2D 1H spin diffusion with SSP, C) 1D 1H SE-SD, D) 1H spin echo with 1H spin-lock 

pulse to enhance longitudinal relaxation by 1H spin diffusion and E) 1D SE-SD with spin-lock 

pulse to enhance 1H longitudinal relaxation and DANTE SE pulse train. In each sequence, dashed 
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green boxes indicate the optional inclusion of a selective saturation pulse (SSP). zf denotes a z-

filter delay that follows the final SSP. SSP denotes a z-filter/spin diffusion delay in between the 

SSP.  

 

 
Figure S2. Comparison of 1H spin echo solid-state NMR spectra obtained without (solid trace) or 

with a single 6 ms SSP (dashed trace) for A) mecl, B) phenaz, C) hist and D) a 10 wt-% hist, 90 

wt-% lactose physical mixture. The SSP was applied at an offset of 3.5 ppm in all cases. hist is a 

convenient sample for the setup and optimization of SSPs, selective excitation pulses and 2D 1H 

SD NMR experiments incorporating both elements. All spectra acquired at B0 = 9.4 T with νrot = 

50 kHz the pulse sequence shown in Figure S1A. 
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Figure S3. Experimental PXRD patterns for the samples used in this work. The simulated PXRD 

patterns for mexi-I and mexi-II were calculated from the previously reported single crystal X-ray 

diffraction structures (CSD codes: JIZJEH and JIZJEH01, respectively).  
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Figure S4. MAS 1H spin-echo NMR spectra of commonly encountered excipients and the APIs 

studied in this work acquired at B0 = 9.4 T with νrot = 50 kHz. CCNa is sodium croscarmellose and 

Mg Stearate is magnesium stearate. All other compounds are defined in Figure 1 of the main text.  
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Figure S5. MAS 1H SSNMR spectra of hist acquired with different pulse sequences A) spin echo, 

B) 2D 1H SD without SSP, C) DQ-filtered spectrum obtained with the BABA pulse sequence and 

D) 2D 1H SD obtained with a SSP applied at 3.5 ppm. For the 2D NMR experiments, the spectra 

were obtained from the first t1 increment of the 2D experiment. The sensitivity of the high 

frequency feature at ca. 17 ppm is similar for all the SQ experiments (A), B), and D)) but 

substantially decreased in the DQ experiment (C). All experiments were performed at B0 = 9.4 T 

with rot = 50 kHz.  

 

 

 

 

 

.  
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Figure S6. 2D 1H SD NMR spectra of mecl pure (left column) and a commercial mecl tablet with 

12.5 wt-% API (right column) acquired at B0 = 18.8 T with νrot = 50 kHz. A) and B) acquired 

without SSP and with a 20 ms spin diffusion period, C) and D) acquired with a 6 ms SSP applied 

at 3.5 ppm and a 20 ms spin diffusion period. E) and F) were acquired with a 6 ms SSP applied at 

3.5 ppm and no spin diffusion period. Rows indicated with the dashed lines are shown in Figure 

S7. Arrows indicate the frequency of the SSP. Total experiment times are indicated on the 2D 

NMR spectra. 
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Figure S7.  1H SSNMR spectra of mecl extracted from the indicated rows of the 2D SD 1H NMR 

spectra shown in Figure S6. NMR spectra shown in (A-D) were acquired with 20 ms spin diffusion 

delay, while those in E) and F) were obtained without a diffusion delay.  
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Figure S8. MAS 1H SSNMR spectra of mecl pure and a commercial mecl tablet acquired at B0 = 

9.4 T with νrot = 50 kHz. A) 1D spin echo NMR spectra. B) and C) 2D 1H SD NMR spectra 

acquired with a SSP applied at 3.5 ppm and a 20 ms spin diffusion period (see Figure S1 for the 

corresponding pulse sequence). D) 1D 1H NMR spectra extracted from rows of the 2D NMR 

spectra, indicated with dashed lines. 
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Figure S9. MAS 1H and 1H-13C CP-TOSS SSNMR spectra of pure mecl (blue traces) and a mecl 

tablet (red traces). A) 1D DEPTH 1H SSNMR spectra, B) 1H SSNMR spectra extracted from rows 

of the 2D NMR spectra shown in Figure 2 of the main text, C) 1D SE-SD NMR SSNMR spectra, 

D) 1H-13C CP-TOSS. The sensitivities (S) and SNR ratios of the API signals are listed with each 

spectrum. The asterisks denote the peak used for determination of SNR and calculation of S. Note 

that because of signal overlap from multiple carbon atoms the aromatic 13C NMR signals at ca. 

130 ppm have much higher intensity, SNR and S than the NMR signal at 50 ppm used for 

determination of 13C sensitivity (S = 5.8 min–1/2 for the aromatic signals in the tablet). However, 

because of the peak overlap, the aromatic carbon NMR signals will likely not be diagnostic for 

different solid forms of mecl. Consequently, the second most intense and resolved 13C NMR signal 

at ca. 50 ppm was used for the determination of 13C sensitivity. 1H SSNMR experiments were 

performed with 1.3 mm rotors, B0 = 18.8 T and νrot = 50 kHz (left column). 1H-13C CP-TOSS 

SSNMR experiments were performed with 4.0 mm rotors, B0 = 9.4 T and νrot = 8 kHz (right 

column). 
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Figure S10. MAS 1H SSNMR spectra of pure phenaz and a commercial phenaz tablet acquired at 

B0 = 18.8 T with νrot = 50 kHz. A) 1D spin echo NMR spectra. B) and C) 2D 1H SD NMR spectra 

acquired with a SSP applied at 3.5 ppm and a 20 ms spin diffusion time. D) 1H SD NMR spectra 

extracted from the indicated rows of the 2D NMR spectra. Total experiment times are indicated 

on the 2D NMR spectra. 
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Figure S11. MAS 1H SSNMR spectra acquired at B0 = 18.8 T with νrot = 50 kHz of phenaz pure 

(blue traces) and a commercial phenaz tablet with 68-wt% API loading (red traces). A) 1H spin 

echo SSNMR spectra. B) 1D SE-SD NMR spectra obtained with a 20 ms spin diffusion time. The 

dashed line indicates the transmitter position for the selective excitation pulse. The NMR spectrum 

of the phenaz tablet in B) was obtained in 4 minutes.   
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Figure S12. 1D 1H MAS SSNMR spectra of pheny pure and a commercial pheny tablet. Both 

spectra were acquired at B0 = 18.8 T with νrot = 50 kHz. Dashed lines indicate positions of the two 

features assigned to crystallographically-distinct ammonium protons in the pure material. These 

features are not visible in the spectrum of the dosage material likely because the API exists in a 

different solid phase in the tablet. 
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Figure S13. 2D 1H SD NMR spectra of pure pheny (left column), a commercial 7 wt-% pheny 

tablet (middle column) and a model formulation consisting of a physical mixture of 7 wt-% pheny 

in MCC (right column). All spectra were acquired at B0 = 9.4 T with νrot = 50 kHz. A), B) and C) 

acquired with 20 ms spin diffusion and no SSP D), E) and F) acquired with 20 ms spin diffusion 

and a 6 ms SSP applied at 4.5 ppm and G), H) and I) acquired with no spin diffusion period and a 

6 ms SSP applied at 4.5 ppm. Rows indicated with the dashed lines are shown in Figure S14. The 

arrow indicates the transmitter offset of the SSP. Total experiment times are indicated on the 2D 

NMR spectra.  
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Figure S14. MAS 1H SSNMR spectra of pure pheny (blue), commercial pheny tablet (red), and a 

model pheny formulation (green). A), D), and G) 1D 1H spin echo NMR spectra. B), C), E), F), 

H) and I) 1D NMR spectra extracted from rows of the 2D 1H SD NMR spectra were obtained at a 

9.9 ppm chemical shift in the indirect dimension (Figure S13). All NMR spectra were acquired at 

B0 = 9.4 T with νrot = 50 kHz. 
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Figure S15. 1H-13C CP-TOSS/MAS spectra of A) pure pheny, B) a commercial pheny tablet with 

7 wt-% API and C) a model formulation consisting of a physical mixture of 7 wt-% pure pheny 

and MCC. The inset in B) compares spectra of pure crystalline pheny and the commercial pheny 

tablet. All spectra were acquired with B0 = 9.4 T, a 4.0 mm rotor and νrot = 8 kHz. Total experiment 

times are indicated. The 13C SSNMR spectra suggest that the commercial tablet contains a different 

solid form of pheny that is clearly different from the crystalline pure form. The pheny in the tablet 

is likely amorphous. 
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Figure S16. Summary of 1H saturation recovery experiments on theo-I. Signal build-up plots are 

shown for the amine (NH, blue), methine (CH, red) and methyl (CH3, green) protons of theo-I. 

The saturation recovery experiments were performed with A) 50 kHz MAS and a 1.8 ms spin-lock 

pulse to promote spin diffusion from methyl 1H to the other 1H, B) 50 kHz MAS without a spin-

lock pulse and C) 8 kHz MAS. All experiments were performed with B0 = 9.4 T. T1 values 

determined form curve fits are shown in Tables S2 and S3. 
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Table S2. T1 (
1H) measured for theo-I and theo-II with 8 kHz MAS 

 

Polymorph T1 (s) 

 -NH  -CH  -CH3  

theo-I 45 45 53 

theo-II 49 56 64 

 

Table S3. T1 (
1H) measured for theo-I and theo-II with 50 kHz MAS 

 

Polymorph T1(s)a T1 w/ 1H spin-lock (s)b 

 -NH  -CH  -CH3  -NH   -CH -CH3  

theo-I 303 139 52 85 78 59 

theo-II 463 109 61 73 72 65 
 

aMeasured with a standard saturation recovery pulse sequence. 
bMeasured with a 1.8 ms 1H spin-lock pulse inserted prior to the final excitation pulse (pulse 

sequence similar to that depicted in Figure S1D). The 1H spin-lock pulse promotes spin diffusion 

between the methyl 1H and high frequency amine and methine 1H spins, resulting in a reduction in 

the apparent T1 of the amine and methine. 

 

Table S4. Data used for the calibration plot in Figure 7 of the main text. 

 

theo-II 

wt. (%) 

Integrated 

Intensity 
Predicted theo-II wt.%a 

Absolute wt.% Error   

(wt. %) 

 Percentage Error 

(%) 

2 1.54 1.50 0.50 24.9 

4 4.02 3.92 0.08 1.98 

6.1 6.89 6.72 0.62 10.1 

9.8 9.80 9.55 0.25 2.55 

   Average = 0.36 wt.%  

 Average = 9.9 % 

 

a The predicted theo-II wt.% was calculated using the equation from the calibration curve: 

 

Predicted wt.% = (Integrated Intensity)/1.03.  
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Figure S17. 1H SSNMR spectra of a physical mixture of 98 wt% MCC and 2 wt% theo-II. 1H spin 

echo spectrum recorded (A) without and (B) with SSP on resonance with MCC. (C, D) 1D SE-SD 
1H SSNMR spectra with the DANTE excitation pulse on resonance with the high frequency amine 
1H NMR signal of theo-II. The 1D SE-SD spectrum in (C) was recorded with a 20 s spin-lock 

pulse to minimize 1H spin diffusion. The 1D SE-SD spectrum in (D) was obtained with a 1.8 ms 

spin-lock pulse following the SE DANTE pulse to promote 1H spin diffusion. 1H SSNMR spectra 

were obtained with a 50 kHz MAS frequency at B0 = 9.4 T. 
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Figure S18. MAS 1H spin-echo NMR spectra of the three mexi polymorphs, MCC and the model 

mexi formulation acquired at B0 = 9.4 T with νrot = 50 kHz. Vertical lines are guides for the eye to 

illustrate differences in isotropic 1H chemical shifts. 
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Figure S19. Optimization of SSP conditions on mexi-I, mexi-III and MCC. The plots show the 

relative signal intensities as a function of the SSP offset. For mexi-I and mexi-III only the relative 

signal intensity of the ammonium 1H signal with the highest chemical shift is plotted. A) A single 

6 ms SSP was applied with a 20 s z-filter delay preceding the spin echo. 1H NMR spectra are 

shown without any SSP (solid trace) and with an SSP offset of 3.95 ppm (dashed trace). B) Three 

6 ms SSP were applied, with a 20 ms delay (SSP) in between each SSP and a 20 s z-filter delay 

preceding the spin echo. 1H NMR spectra are shown without any SSP (solid trace) and with three 

SSP applied at an offset of 2.9 ppm (dashed trace). The vertical dashed lines indicate the SSP 

offset. All data acquired at B0 = 9.4 T with νrot = 50 kHz with the pulse sequence shown in Figure 

S1A. 
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Figure S20. 2D 1H SD NMR spectra acquired at B0 = 9.4 T with νrot = 50 kHz. A) mexi-I, B) mexi-

III, and C) a model formulation, D) MCC and E) mexi-II. The model formulation is a physical 

mixture of 5.2 wt-% mexi-III, 26.7 wt-% mexi-I, and 68.0 wt-% MCC (total API load of 32 wt-

%). Three SSPs were applied at an offset of 2.9 ppm with a spin diffusion period of 20 ms 

separating each SSP. This SSP condition saturates mexi-I and the MCC, allowing the 1H SSNMR 

signals from mexi-III to be selectively detected in the model formulation (see Figure S19). 

Different rows extracted from the 2D SD 1H NMR spectra are compared in Figure S21 and Figure 

6 of the main text. 
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Figure S21. Comparison of rows extracted from the 2D SD 1H NMR spectra of the different mexi 

forms. The corresponding 2D NMR spectra are shown in Figure S20. Rows 1, 2 and 3 were 

extracted from indirect dimension chemical shifts of 6.8 ppm, 8.0 ppm and 9.7 ppm. Figure 6 of 

the main text compares the 9.7 ppm rows for the different samples. 
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Table S5. 1H Longitudinal Relaxation Time Constants (T1) * for Different Samples 

 

Sample T1 (s) Magnetic Field (T) 

pure mecl 7.6 18.8 

pure mecl 5.3 9.4 

mecl tablet 5.3 18.8 

pure phenaz 7.0 18.8 

phenaz tablet 12 18.8 

pure phenaz 10.4 9.4 

phenaz tablet 22 9.4 

pure pheny 18 9.4 

pheny model formulation 15 9.4 

pure mexi-I 6.3 9.4 

pure mexi-II 4.6 9.4 

pure mexi-III 1.5 9.4 

 

*The T1 is reported for the 1H signal with the highest chemical shift.  
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Abstract 

Fast magic angle spinning (MAS), frequency selective (FS) heteronuclear multiple 

quantum coherence (HMQC) experiments which function in an analogous manner to solution 

SOFAST HMQC NMR experiments are demonstrated. Fast MAS enables efficient FS excitation 

of 1H solid-state NMR signals. Selective excitation and observation preserve 1H magnetization, 

leading to a significant shortening of the optimal inter-scan delay. Dipolar and scalar 1H{14N} FS 

HMQC solid-state NMR experiments routinely provide 4- to 9-fold reductions in experiment 

times as compared to conventional 1H{14N} HMQC solid-state NMR experiments. 1H{14N} FS 

resonance-echo saturation-pulse double-resonance (RESPDOR) allowed dipolar dephasing 

curves to be obtained in minutes, enabling the rapid determination of NH dipolar coupling 
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constants and inter-nuclear distances. 1H{14N} FS RESPDOR was used to assign 

multicomponent active pharmaceutical ingredients (APIs) as salts or cocrystals. FS HMQC also 

provided enhanced sensitivity for 1H{17O} and 1H{35Cl} HMQC experiments on 17O labeled 

Fmoc-alanine and histidine hydrochloride monohydrate, respectively. FS HMQC and FS 

RESPDOR experiments will provide access to valuable structural constraints from materials that 

are challenging to study due to unfavorable relaxation times or dilution of the nuclei of interest. 

Introduction 

 14N is an attractive nucleus for solid-state NMR spectroscopy because it has a 99.6% 

natural isotopic abundance. Unfortunately, 14N is a spin-1 quadrupolar nucleus with a low 

gyromagnetic ratio () and low Larmor frequency (0 = 28.9 MHz at 9.4 T). Static and MAS 14N 

solid-state NMR spectra typically cover spectral widths of several MHz because of broadening 

by the quadrupolar interaction.[1] Schurko and co-workers have demonstrated a number of 

wideline techniques for broadband signal excitation that enable routine acquisition of 14N solid-

state NMR spectra of stationary powders.[2] But, these experiments require ca. 50–100 mg of 

material and samples containing multiple 14N environments may be difficult to study because 

overlap of 14N powder patterns will complicate analysis. 

Gan and Bodenhausen demonstrated that 2D heteronuclear multiple quantum coherence 

(HMQC) experiments can be used to indirectly detect 14N signals via high-resolution magic 

angle spinning (MAS) 13C or 1H NMR signals.[3] Efficient excitation of the 14N spins can be 

achieved with low power 14N pulses or DANTE pulse trains.[3a, 4] Detection of the “spy-nucleus” 

simultaneously enhances sensitivity and spectral resolution.[3] Solid-state 1H{14N} HMQC 

experiments are normally performed with fast MAS frequencies above 30 kHz to enhance 1H 

resolution and sensitivity.[4a, 5] In dipolar-HMQC (D-HMQC) experiments dipolar recoupling is 
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applied to the spin-1/2 spy-nucleus to accelerate coherence transfer and allow observation of 

through-space proximities.[4a, 6] Alternative indirect detection schemes utilizing 1H-14N cross-

polarization[7] or TRAPDOR HMQC pulse sequences using long-duration 14N pulses for 

simultaneous recoupling and excitation have also been demonstrated.[8] Nishiyama showed that 

80 kHz MAS 2D 1H{14N} J- or D-HMQC NMR spectra of simple organic molecules such as 

glycine or alanine could be obtained in several minutes from less than 1 mg of material.[9] Brown 

and co-workers have used 60 kHz MAS 1H{14N} D-HMQC experiments to determine the 

protonation states of multi-component active pharmaceutical ingredients (APIs).[10] They have 

also studied hydrogen bonding in amorphous dispersions of APIs[11] and other organic solids.[12] 

HMQC pulse sequences have also been applied for proton detection of half-integer quadrupolar 

nuclei such as 27Al, 35Cl, and 71Ga,[13] spin-1/2 nuclei such as 195Pt that exhibit large chemical 

shift anisotropy (CSA),[13c, 14] and low- spin-1/2 nuclei such as 89Y.[15] 

However, the intrinsically poor sensitivity of NMR spectroscopy often leads to long 

experiment times or prevents NMR experiments altogether. One way to improve NMR 

sensitivity is to use refocusing pulses, spin-locking and/or frequency-selective (FS) excitation to 

conserve magnetization and reduce recycle delays.[16] For example, solution 1H{15N} SOFAST 

HMQC NMR experiments on biomolecules use FS 1H pulses to selectively excite and refocus 

high frequency amide 1H NMR signals correlated to amide 15N spins.[16d, 16e] The magnetization 

of 1H spins in the amino acid side chains are unaffected by the FS pulses, consequently, amide 

1H spins are rapidly re-polarized by 1H spin diffusion driven by the Overhauser effect, resulting 

in dramatically faster signal build-up.[16c-e] Typically, SOFAST HMQC provides 2-3 fold 

improved sensitivity for solution NMR experiments and order of magnitude reductions in 

experiment times.[16d, 16e] 
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Here, we demonstrate that DANTE pulse trains[17] provide efficient FS 1H excitation 

pulses for fast MAS 1H solid-state NMR experiments on organic solids, enabling FS scalar or 

dipolar 1H{14N} HMQC experiments (FS J-HMQC and FS D-HMQC, respectively). The solid-

state FS HMQC sequences operate in a similar manner to solution SOFAST HMQC sequences 

by preserving longitudinal 1H magnetization that is not correlated to the heteronuclear spins of 

interest. FS HMQC signal build-up rates may be accelerated by a factor 4-9 compared to 

conventional solid-state 1H{14N} J- and D-HMQC, enabling application of these NMR 

experiments to challenging samples and previously inaccessible systems. Additionally, 1H{14N} 

FS RESPDOR experiments[18] allow rapid measurements of 1H-14N dipolar couplings and NH 

bond lengths. Accelerated acquisition of 2D 1H{17O} and 1H{35Cl} solid-state NMR spectra with 

FS HMQC pulse sequences is also demonstrated.  

Results and Discussion 

DANTE pulse trains, Gaussian pulses or low-power rectangular pulses have previously 

been used for frequency selective excitation and inversion in fast MAS 1H solid-state NMR 

experiments.[19] Here, 1H{14N} FS HMQC was implemented by using DANTE pulse trains[17] for 

efficient and selective excitation of high-frequency 1H spins associated with amine and 

ammonium groups. The DANTE blocks consist of a periodic train of small tip angle excitation 

pulses.[17] The pulses were 0.1 or 0.2 s in duration (2° or 5.0° tip angle) and separated by two 

rotor cycles. The total duration of DANTE pulse trains was between 347 s and 640 s (see SI 

for details). The 1H solid-state NMR spectrum of histidine•HCl•H2O (hist) obtained with 50 kHz 

MAS shows that the amine and ammonium 1H spins resonate at 17.2 ppm (Ha), 12.7 ppm (Hb), 

and 8 ppm (Hc) (Figure 1A). Figure 1B demonstrates that a DANTE train can selectively excite 

the Ha 
1H NMR signal with 86% efficiency of the rectangular high-power pulse. Figure 1C 
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shows a 1H spin echo spectrum obtained with a DANTE train applied to the Ha 
1H NMR signal 

prior to the broadband read pulses. This experiment demonstrates that the DANTE train 

minimally perturbs lower-frequency 1H magnetization. Ia is 0.45 in Figure 1C, but is expected to 

be 0.14 because the peak intensities in Figure 1B and 1C should add up to 1.00. The intensity of 

Ia is likely higher than expected in Figure 1C because 1H spin diffusion occurs during the course 

of the 640 s DANTE block. In summary Figures 1A-1C show that after selective excitation of 

the Ha 
1H NMR signal with a DANTE train, there is a large amount of 1H magnetization that 

remains on the low-frequency 1H spins. The high-frequency Ha
 1H spins can then be rapidly re-

polarized via 1H spin diffusion.  

 

Figure 1. Quantification of DANTE excitation efficiency and magnetization losses on hist for 

pulse sequence elements required to implement solid-state FS HMQC. The molecular structure of 

hist is shown with assignment of the 1H peaks. Pulse sequences are shown on the left and the 

resulting NMR spectra on the right. Relative 1H NMR signal intensities are indicated. (A) 

Reference spectrum obtained with a broadband spin echo. (B) Selective spin echo with DANTE 
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train for excitation. (C) Selective saturation of the high-frequency 1H NMR signal with a DANTE 

train. (D) A broadband spin echo with a composite -inversion pulse. (E) Broadband spin echo 

with 480 s of 𝑆𝑅41
2 dipolar recoupling and inversion pulse prior to excitation. All spectra were 

obtained with 8 scans, τzf = 40 μs, rot = 50 kHz, B0 = 9.4 T and recycle delays of 16 s (> 5 ×T1).   

 

Figure 1D and 1E shows how to implement the remaining pulse sequence elements 

required for a solid-state FS HMQC pulse sequences. In the solution SOFAST HMQC pulse 

sequence the central -pulse must also be frequency-selective, otherwise magnetization of 1H 

spins that were not excited by the initial  /2-pulse will be inverted, then undergo inversion 

recovery. However, given the short homogeneous transverse relaxation times (T2’) of 1H in the 

solid-state it is difficult to incorporate an efficient FS-refocusing pulse into the HMQC block. 

Fortunately, there is a simpler solution. The magnetization of all 1H spins can be inverted at the 

start of the sequence by a composite -pulse (90Y-180X-90Y, Figure 1D and Figure 2B). The 

composite pulse is more tolerant to rf inhomogeneity, slightly improving inversion efficiency.[20] 

The inversion pulse results in the loss of ca. 10-13% of the 1H magnetization (Figure 1D). In the 

FS HMQC pulse sequence (Figure 2B), the inversion pulse is followed by a DANTE train, then 

scalar or dipolar couplings evolve to generate multiple quantum coherence. The broadband -

pulse that follows will simultaneously refocus transverse 1H magnetization and invert the 

longitudinal 1H magnetization back to the +z-axis. After signal detection, the high-frequency 1H 

spins are then repolarized by 1H spin diffusion from lower-frequency 1H spins, leading to 

shortened optimal recycle delays. Therefore, it is straightforward to implement pulse sequences 

analogous to SOFAST HMQC for solid-state 1H{14N} J-HMQC experiments where no dipolar 

recoupling is applied.   

What about D-HMQC pulse sequences where recoupling pulse sequences are applied on 

the 1H channel? The most widely applied recoupling sequence for proton detected D-HMQC is 
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currently 𝑆𝑅41
2,[19a] which consists of an even number of -pulses and each -pulse has 180° 

phase alternation.[19a] Therefore, there will be no net rotation of longitudinal 1H magnetization 

by 𝑆𝑅41
2 recoupling, even in the presence of an inhomogeneous RF-field. Fortunately, 

longitudinal 1H magnetization also decays slowly under 𝑆𝑅41
2 symmetry-based recoupling so 

that there are minimal losses in longitudinal 1H magnetization, even after several milliseconds of 

dipolar recoupling (Figure 1E and Figure S1). Overall, Figure 1 clearly illustrates that ca. 75-

80% of the longitudinal 1H magnetization can be preserved in the presence of all pulse sequence 

elements required for FS D-HMQC/FS RESPDOR sequences. 

Scalar and dipolar FS HMQC solid-state NMR experiments were performed on hist and 

compared to standard HMQC experiments (Figure 2A and 2B). Figure 2C shows measurements 

of the relative sensitivity (Srel = signal intensity × rd
–1/2) as function of the inter-scan delay (rd). 

FS and broadband dipole recoupled spin echo and standard spin echo pulse sequences were used 

for all of the relaxation experiments presented here (Figure S2). The spin echo sequences are 

identical to the corresponding D-HMQC/J-HMQC pulse sequences, except the 14N pulses are 

excluded. The spin echo experiments have the same signal build-up characteristics as HMQC 

experiments but offer better sensitivity for the relaxation measurements since the direct 1H 

magnetization is monitored without any 14N filtering/dephasing. The sensitivity curves in Figures 

2C and 2D were fit with a slightly modified version of the function describing the relative 

sensitivity of flip-back CPMAS experiments proposed by Emsley and co-workers:[16j] 

𝑆𝑟𝑒𝑙(𝑓𝑒 , 𝑓0, 𝜏𝑟𝑑) = 𝑓𝑒

𝐴

√𝜏𝑟𝑑

1 − exp (–
𝜏𝑟𝑑

𝑇𝐵
)

1 − 𝑓0exp (–
𝜏𝑟𝑑

𝑇𝐵
)

                                  (1) 

Srel is the relative sensitivity, fe accounts for the efficiency of the excitation pulse, f0 is the 

fraction of magnetization left after a single scan, TB is the build-up time constant (usually equal 



www.manaraa.com

83 

 

to T1), and A is a scaling factor adjusted so that Srel = 1.00 for conventional HMQC experiments 

performed with rd = 1.26×TB. For a broadband /2 pulse fe = 1.0, while for DANTE fe may be 

less than 1.0 due to relaxation losses. DANTE excitation on the Ha signal of hist gives fe ≈ 0.86 

(Figure 1B). 

 

Figure 2. (A, B) Pulse sequences for (A) conventional HMQC and (B) FS HMQC. 𝑆𝑅41
2 dipolar 

recoupling is not applied in the J-HMQC experiments. (C, D) Measurement of relative sensitivity 

for conventional and FS (C) D-HMQC and (D) J-HMQC for the HA NMR signal of hist. In (C) 

and (D) spin echo pulse sequences were used as described in the main text. Experimental 

sensitivity curves (open diamonds) and fits to equation 1 (solid lines) are shown for the 17.2 ppm 
1H NMR signal. Fit parameters are indicated. (E, F) Comparison of 2D 1H{14N} NMR spectra of 

hist obtained with conventional and FS (E) D-HMQC and (F) J-HMQC. The FS HMQC spectra 

were obtained with the DANTE pulses on resonance with the different 1H NMR signals. Total 

experiment times are indicated. D-HMQC experiments were performed with rot = 50 kHz and J-

HMQC with rot = 60 kHz. All experiments performed with B0 = 9.4 T. 

 

The sensitivity curve for conventional D-HMQC can be fit with f0 = 0.0 and the build-up 

time constant (TB) of 3.2 s matches the 1H T1 measured in a normal 1H saturation recovery 
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experiment. As expected, the recycle delay that provides optimal sensitivity is approximately 3.9 

s (1.26×TB) for conventional D-HMQC.  The shape of the sensitivity curve for FS HMQC 

matches those previously reported for NMR experiments such as solution SOFAST HMQC or 

solid-state flip-back CP where residual longitudinal 1H magnetization is preserved after each 

scan.[16b, 16d, 16e, 16g, 16j] The fit of the FS D-HMQC sensitivity curve yields TB = 3.2 s and f0  = 

0.82, suggesting that 82% of the 1H polarization is retained after each scan. The conservation of 

1H magnetization leads to a reduced optimal recycle delay of 0.7 s (0.2×TB). The faster recycling 

provides a factor 1.8 improvement in relative sensitivity and reduces experiment times by a 

factor 3.2 for FS D-HMQC as compared to standard D-HMQC. A sensitivity gain and reduction 

in the optimal recycle delay was also observed for FS spin echo experiments that are analogous 

to FS J-HMQC (Figure 2D). For 60 kHz J-HMQC experiments TB was reduced to 2.5 s because 

of sample heating caused by the increase in MAS frequency. While conventional HMQC also 

performs well for hist, the sensitivity gains provided by FS HMQC enables high-quality 2D 

1H{14N} dipolar- or scalar-HMQC NMR spectra of hist to be recorded in only a few minutes for 

each 1H peak (Figures 2E and 2F). The sensitivity of the NMR spectra extracted from the 1H 

HMQC signal at 17.2 ppm are compared in Figure S3 and the sensitivity gains with the FS 

HMQC experiments are consistent with the relaxation experiments. 

1H{14N} FS D- and J-HMQC experiments on hist were also repeated at an ultra-fast MAS 

frequency of 95 kHz on an 18.8 T (800 MHz) NMR spectrometer. With these conditions, the 

DANTE pulses have a high excitation efficiency of 96% for the Ha 
1H NMR signal (Figure S4). 

As expected, the efficiency and selectivity of the DANTE pulses improves with increased MAS 

frequency and magnetic field. One challenge with higher fields and faster MAS frequencies is 

that 1H spin diffusion is slowed, which can result in a distinct 1H T1 for the different peaks in the 
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spectrum,[19d, 21] hindering recovery of 1H magnetization by spin diffusion. To address this 

problem the conventional and the FS HMQC sequences were slightly modified for the 18.8 T 

experiments. The initial inversion pulse is replaced with a 90°Y – spin-lockX – 90°Y block that 

inverts all magnetization. The spin-lock pulse accelerates 1H spin diffusion and makes the 1H 

magnetization more homogeneous across the entire 1H spectrum.[19d, 21b] Figure S5 shows the 

sensitivity curves for FS and conventional D- and J-HMQC experiments at 18.8 T. For D-HMQC 

the gain in sensitivity was about a factor 1.8, similar to that observed at 9.4 T. However, for J-

HMQC, a factor 3 gain in sensitivity was observed at 18.8 T, corresponding to factor of 9 gain in 

acceleration of the acquisition (Figure S6). Comparing FS J-HMQC and FS D-HMQC at 18.8 T 

the large gain in sensitivity for the J-HMQC experiments likely occurs because of the better 

efficiency of the DANTE pulse and the absence of 1H dipolar recoupling pulses that cause some 

loss of magnetization. 1H{14N} FS J-HMQC spectra of hist were acquired in only 30 seconds 

each (Figure 3). The MAS spectrum of the I = 1 nuclei 14N and 2H are very sensitive to the 

precision of the magic angle setting.[1a, 22] Therefore, 1H{14N} FS HMQC experiments can also 

be used to rapidly calibrate the magic angle (Figure 3A). This approach is useful because when 

probes are configured for 14N experiments there are few standards available to accurately 

calibrate the magic angle. 
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Figure 3. Setting the magic angle using FS J-HMQC and hist. (A) Stack of 14N SSNMR spectra 

of hist extracted from 2D 1H{14N} FS J-HMQC. The upper row shows the spectrum when the 

magic angle is accurately adjusted and the bottom most row shows the spectrum when the magic 

angle is mis-set. Comparison of the 2D 1H{14N} FS J-HMQC spectra when (B) magic angle is 

accurately adjusted and (C) magic angle is mis-set. Each spectrum was obtained in 30 seconds. All 

experiments were performed rot = 95 kHz and B0 = 18.8 T. (D) Analytical simulations of 14N 

solid-state NMR spectra as a function of the MAS rotation angle. 

 

The added sensitivity and significantly reduced experiment times provided by FS HMQC 

are very beneficial for 1H{14N} HMQC experiments on larger molecules where NH functional 

groups will be more dilute. For example, multi-component active pharmaceutical ingredients are 

typically formed by reacting a basic API with an acid coformer.[10-11, 23]  It is important to 

determine whether the reaction of the API and coformer results in a salt, formed when a basic 

group of the API is protonated, or a cocrystal, formed when the proton from the acid is not fully 

transferred, but forms a hydrogen bond with the API.[10-11, 23] Brown and co-workers have used 
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1H{14N} D-HMQC[10-11] and 15N{1H} J-resolved solid-state NMR experiments[10] to qualitatively 

probe NH bond lengths and differentiate salts and cocrystals. Recently we have used DNP-

enhanced 15N solid-state NMR to measure NH bond lengths and determine protonation states of 

the API GDC-0022 when it is reacted with different acid co-formers.[23]  

Figure 4A shows the single-crystal X-ray diffraction structures of the tosylic acid salt of 

GDC-0022 (denoted as 1) and a cocrystal formed by reacting two equivalents of GDC-0022 with 

fumaric acid (2, see Scheme 1 in the SI for full molecular structures).[23] All H-atom positions 

were optimized by plane-wave DFT.[23]  1 is a salt since the hydrogen atom from tosylic acid is 

transferred to the API (rNH calc = 1.07 Å), while 2 is a cocrystal since the hydrogen remains bound 

to fumaric acid and forms a hydrogen bond to the API (rNH calc = 1.53 Å and 1.55 Å, the second 

hydrogen bond is not shown).[23] The 1H spin echo spectra of 1 and 2 shows that the hydrogen 

atoms involved in bonds to the API/acid co-formers resonate at high-frequency and are well 

resolved from the other 1H NMR signals (Figure 4B), consistent with previously published DNP-

enhanced 2D 1H-15N and 1H-13C HETCOR NMR spectra.[23] Note that the 1H NMR signals of 

ammonium, amine and carboxylic groups often resonate at a high 1H chemical shifts and are 

usually resolved from other 1H NMR signals when fast MAS is used.[19d] Conventional 1H{14N} 

D-HMQC spectra of 1 and 2 recorded with short dipolar recoupling times (rec < 0.75 ms) only 

show the high-frequency acid 1H NMR signals because only these 1H spins reside within 2 Å of 

a nitrogen atom. Consequently, FS and conventional 1H{14N} D-HMQC spectra of 1 and 2 will 

provide the exact same information, but, FS D-HMQC provides 2.2- and 1.9-fold higher 

sensitivity for 1 and 2, respectively (Figures S7 and S8). The 2D 1H{14N} D-HMQC spectra of 1 

and 2 clearly shows correlations between the 1H and 14N of the nitrogen and hydrogen atoms that 

are bonded, and hydrogen bonded, respectively (Figure 4B). 
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Figure 4. (A) Crystal structures of the tosylate salt (1) and hemi-fumaric acid cocrystal (2) of 

GDC-0022 with DFT-optimized NH bond lengths indicated.  (B) 1H and 1H{14N} D-HMQC 

SSNMR spectra of 1 and 2. (C) Comparison of 14N SSNMR spectra of 1 and 2. Analytically 

simulated 14N SSNMR spectra using 14N NMR parameters obtained from plane-wave DFT 

calculations are shown as dashed lines. (D) Comparison of experimental and SIMPSON simulated 

(solid lines) 1H{14N} RESPDOR dipolar dephasing curves for 1 and 2 with 1H-14N dipolar 

coupling constants corresponding to the indicated inter-nuclear distances. All experiments 

performed with B0 = 9.4 T at rot = 50 kHz. 
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1H{14N} HMQC and RESPDOR experiments[18] can be used to probe NH bond length 

and differentiate salts and cocrystals. First, the CQ(14N) is larger for 2 than 1 as indicated by the 

more positive frequency of the 14N SSNMR signal in 2; the peak position is determined by the 

combined effects of the chemical shift and quadrupole induced shift (QIS),[3b, 8b] with the latter 

dominating at 9.4 T. Analytically simulated 14N solid-state NMR spectra are shown as dashed 

lines and allow CQ(14N) and iso(
14N) to be estimated (Figure 4C). The values of CQ(14N) and 

iso(
14N) determined from simulations in good agreement with those predicted by plane-wave 

DFT for 1 and 2 (Tables S1 and S2). The observed and DFT predicted differences in CQ(14N) for 

1 and 2 suggest that CQ(14N) increases as the NH bond length increases. Second, NH bond 

lengths can be directly measured with 1H{14N} RESPDOR experiments as was recently 

demonstrated by Nishiyama and Goldbourt.[24] However, experiment times of 6-10 hours have 

been reported to record 1H{14N} RESPDOR dipolar dephasing curves of amino acids[24] and 

multicomponent APIs.[25] Here, 1H{14N} FS RESPDOR experiments allowed complete dipolar 

dephasing curves to be obtained in only 20 minutes each for 1 and 2 (Figure 4D, Figures S9 and 

S10). 1H{14N} RESPDOR curves for 1 and 2 were calculated with the SIMPSON simulation 

program for a 1H-14N-14N spin system. This 3-spin system was used to mimic the interactions 

present in 1 and 2. CQ values and nitrogen chemical shifts obtained from plane-wave DFT were 

used in the simulations. Dipolar dephasing curves were then calculated for different dipolar 

coupling constants (NH bond lengths) and rNH = 1.10 Å and rNH = 1.40 Å were found to give the 

best fits for 1 and 2, respectively (Figure S9 and Figure S10). These bond lengths are in good 

agreement with the NH bond lengths predicted by plane-wave DFT calculations and previously 

measured by DNP-enhanced 1H-15N DIPSHIFT experiments on 1 and 2.[23] Note that the DNP-

enhanced DIPSHIFT experiments required ca. 4 hours each, therefore, the 1H{14N} FS 
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RESPDOR is likely the fastest and most sensitive method to measure NH bond lengths for 

natural abundance materials. For 2 there is substantial uncertainty in rNH because the saturation 

factor (f) was also included as an adjustable parameter in the fits of experiment RESPDOR 

curves (see SI). The accuracy of the NH bond length measurements can be improved by using a 

phase modulated saturation pulse to more reliably saturate the 14N spins.[24-25]   

1H{14N} FS RESPDOR was also performed on the ammonium 1H signal at 17.2 ppm of 

hist to confirm the accuracy of the NH distance measurements (Figures S11). Using 1H{14N} FS 

RESPDOR rNH = 1.10 Å was determined, in good agreement with the value of rNH = 1.09 Å 

measured by Levitt and co-workers with 15N{1H} symmetry-based recoupling, separated local 

field (SLF) experiments on 15N-enriched hist.[26] 

 FS HMQC experiments were also performed on other samples and with different 

NMR-active nuclei. Sulfathiazole is a well-studied pharmaceutical compound with many 

different known polymorphs.[27] Solid-state NMR experiments on sulfathiazole are challenging 

because T1(
1H) is very long, approximately 900 s for the sample examined here (Figure S12). 

Therefore, performing conventional 1H{14N} HMQC is extremely time consuming because inter-

scan delays of ca. 1200 s would be required for optimal sensitivity and total experiment times on 

the order of days would result. With FS D-HMQC the inter-scan delay could be significantly 

reduced to ca. 0.1×T1. The 1H{14N} FS D-HMQC spectrum was obtained in 8.5 hours (Figure 

S12). This example demonstrates FS HMQC may provide large absolute time savings for 

experiments on solids with long proton T1. 
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Figure 5.  Comparison of (A, B) 1H spin echo, (C) Geometry optimized crystal structure of FMOC-

alanine (D) conventional 1H{17O} D-HMQC and (E) 1H{17O} FS D-HMQC. The experiment times 

for the 2D spectra are indicated. (F) Measurement of the relative sensitivities for conventional and 

FS D-HMQC for different inter-scan delays. The fit parameters are indicated along with the curves. 

The experiments were performed with B0 = 9.4 T at rot = 50 kHz. 
 

Proton detected X→1H D-RINEPT experiments have previously been used to obtain 2D 

1H-X correlation NMR spectra with X = 17O and 35Cl.[13b, 28] D-HMQC can theoretically provide 

better sensitivity than D-RINEPT because the initial polarization is derived from 1H spins in the 

HMQC experiment, while in a D-RINEPT experiment it is derived from the lower- quadrupolar 

spin.[13b]  Carboxylic acid groups often give rise to high-frequency 1H NMR signals.[19d, 28a] The 

acid 1H NMR signals can be used for 1H{17O} FS HMQC experiments on 17O-labelled 

carboxylic acids. Figures 5D and E compare the conventional and FS 1H{17O} D-HMQC spectra 

of Fmoc-alanine with each oxygen atom in the carboxylic acid enriched to ca. 20% 17O.[28a] 

Similar to the 1H{14N} HMQC experiments, a factor of 2 gain in sensitivity can be obtained for 

1H{17O} FS HMQC experiments (Figure 5F), allowing a complete 2D spectrum to be obtained in 

only 0.8 hours. The 2D D-HMQC spectra were obtained with 80 s of total recoupling, hence, 

only the 17O central-transition NMR signal from the protonated oxygen atom of the carboxylic 
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acid was observed. We previously showed that the 1H-17O J-coupling in Fmoc-alanine was 58 

Hz.[28a] This J-coupling is large enough to allow 1H{17O} J-HMQC experiments (Figure S13). FS 

J-HMQC was two times more sensitive and four times faster than conventional J-HMQC.  

35Cl solid-state NMR has been shown to be a sensitive probe of molecular structure for 

hydrochloride salts of pharmaceuticals.[29] A 1H{35Cl} FS D-HMQC spectrum of hist was 

acquired in only 8.5 minutes (Figure S14). However, for the 35Cl NMR experiments on hist, FS 

D-HMQC shows only ca. 1.3 times better sensitivity than conventional D-HMQC. The 

sensitivity gains are limited in the 1H{35Cl} FS HMQC experiments because the NH3
+ groups 

found in the middle of the 1H NMR spectrum show the strongest correlation to 35Cl. The 

imperfect selectivity of the 1H DANTE pulse trains leads to partial saturation of other 1H spins, 

reducing the amount of preserved 1H polarization and the FS HMQC sensitivity gains.  

Conclusions  

In summary, scalar and dipolar 1H{14N} FS HMQC solid-state NMR experiments, 

analogous to solution SOFAST HMQC NMR experiments, are straightforward to implement 

with fast MAS and can routinely provide factor 2 to 9 reductions in experiment times as 

compared to conventional HMQC solid-state NMR experiments. 1H{14N} FS RESPDOR 

experiments allowed NH internuclear distances to be rapidly determined, enabling 

multicomponent APIs to be assigned as salts and cocrystals. FS pulse sequences also accelerated 

1H{17O} and 1H{35Cl} HMQC solid-state NMR experiments. The only criteria for FS HMQC 

and FS RESPDOR experiments to succeed is that the 1H spins correlated to hetero-nucleus are 

resolved from the other 1H NMR signals. Therefore, FS HMQC and RESPDOR should be 

applicable to many other nuclei and these experiments should provide access to valuable 

structural constraints in a variety of organic, inorganic and biological systems. We also anticipate 

that significant time savings could also be realized with FS versions of TRAPDOR-HMQC[8a, 8c] 
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and 14N overtone HMQC.[30] The reduced recycle delays provided by FS experiments also allows 

more scans to be obtained in a given unit time which should also help to reduce t1-noise in 2D 

experiments.[31] Finally, fast MAS is crucial to enhance 1H resolution and sensitivity and allow 

efficient FS excitation.  Therefore, the continued development of MAS probes capable of faster 

MAS frequencies will likely further improve the sensitivity gains provided by the FS pulse 

sequences. 
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Appendix for supporting information 

Experimental 

Sample preparation 

 L-histidine hydrochloride monohydrate (hist) and Sulfathiazole were purchased from 

Sigma-Aldrich and used without further purification. GDC-0022 tosylate salt (1) and GDC-0022 

fumaric cocrystal (2) were provided by Genentech Inc. 17O-labeled FMOC-alanine monohydrate 

was synthesized by a previously reported method.[1] The percentage enrichment of 17O-labeled 

FMOC-alanine monohydrate was determined by solution 17O NMR experiments to be ca. 20% 

for each carboxylic acid oxygen atom. 

Solid-State NMR Spectroscopy  

All samples were gently ground into a powder using a mortar and pestle before packing 

into 1.3 mm or 0.75 mm zirconia rotors for solid-state NMR (SSNMR) experiments. 1H, 14N, 17O 

and 35Cl SSNMR experiments were performed on a 400 MHz (B0 = 9.4 T) Bruker Avance III HD 

spectrometer with a 1.3 mm double resonance HX probe. Additional 1H and 14N SSNMR 

experiments were performed on an 800 MHz (B0 = 18.8 T) Bruker Avance III HD spectrometer 

at the National High Field Magnetic Laboratory (NHFML) in Tallahassee, Florida with a home-

built triple resonance 0.75 mm ultra-fast MAS probe containing a 0.75 mm JEOL stator. All 9.4 

T D-HMQC experiments were performed with a 50 kHz MAS frequency and the 9.4 T J-HMQC 

experiments were performed with a 60 kHz MAS frequency. For 50-60 kHz MAS experiments 

the magic angle was carefully set using the 2H signal of a deuterated oxalic acid sample.[1, 2] 

For 18.8 T experiments with a 95 kHz MAS frequency the magic angle was directly set using FS 

J-HMQC experiments as shown in the main text (Figure 3). 1H rf pulses were directly calibrated 

on each sample and 1H chemical shifts were referenced to neat tetramethylsilane (iso = 0 ppm) 

using adamantane (iso = 1.82 ppm) as a secondary standard. 14N, 17O and 35Cl chemical shifts 
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were indirectly referenced using IUPAC frequency ratios.[3] All 14N spectra were referenced to 

the nitromethane scale. 

In all D-HMQC experiments the symmetry-based recoupling sequence SR41
2 [4] was 

applied on the 1H channel at the 2nd order rotary resonance recoupling condition.[5-7] For 

1H{14N} D-HMQC experiments the optimum total dipolar recoupling times used for hist and 

compounds 1 and 2 were 480 s, 400 s and 720 s, respectively. A shorter recoupling time of 

80 s was used for the 1H{17O} D-HMQC of FMOC-alanine to selectively observe the 

protonated oxygen site whereas the longer 1H-35Cl distances and weaker dipolar coupling 

constants in hist necessitated a recoupling duration of 1.6 ms. For all 1H{14N} HMQC 

experiments, the 14N excitation and reconversion pulse lengths had a duration of one rotor 

period. The RF field was 37 kHz for 9.4 T experiments and 53 kHz for 18.8 T experiments. 

1H{17O} and 1H{35Cl} HMQC experiments were performed with central transition-selective 

pulse lengths of 4.75 s and 4.5 s for 35Cl and 17O, respectively. In the FS HMQC and FS 

RESPDOR experiments DANTE pulses were used for selective excitation of 1H NMR signals. 

For the 9.4 T FS D-/J-HMQC experiments, the DANTE pulse trains consisted of 0.2 s DANTE 

pulses with an RF field of 65 kHz (ca. 5° tip angle) and each pulse separated by 2 rotor cycles. 

For the 18.8 T experiments with 95 kHz MAS frequency, the DANTE pulse trains consisted of 

0.1 s DANTE pulses with an RF field of 65 kHz and each pulse separated by 2 rotor cycles. 

The number of pulses in the DANTE train were optimized on each sample to maximize signal 

and between 14-16 pulses and 33 pulses were applied at 9.4 T and 18.8 T, respectively. The total 

duration of the DANTE pulse trains was between 347 s and 640 s and varied because of the 

differences in MAS frequency (50 kHz, 60 kHz or 95 kHz) and the number of pulses. For 9.4 T 

experiments a 90Y-180X-90Y  composite -inversion pulse was used to invert all 1H 
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magnetization at the start of the FS HMQC pulse sequences. For the 18.8 T experiments with 95 

kHz MAS frequency, a 90o
Y – spin lockX – 90o

Y pulse block was used to simultaneously invert 

all initial 1H magnetization and homogenize 1H polarization across the spectrum by accelerating 

1H spin diffusion (see reference 21b of the main text for more details). The duration of the spin-

lock pulse was 2 ms and the RF field of the spin-lock pulse was 240 kHz. These parameters were 

optimized to maximize 1H spin diffusion and minimize magnetization losses due to rotating-

frame relaxation during the spin-lock pulse.  

The NH bond distances were determined using the FS RESPDOR sequence (Figure S9). 

A saturation pulse (sat) with a duration of 1.5 rotor cycles (30 s with a 50 kHz MAS frequency) 

was used on the 14N channel. The RF field of the 14N saturation pulse was 64 kHz. Experimental 

RESPDOR dipolar dephasing curves (1-S/S0) were obtained by measuring the 1H NMR signal 

for each recoupling time without the 14N dephasing pulse (S0) and with the 14N dephasing pulse 

(S). 1H{14N} RESPDOR curves for 1 and 2 were calculated using SIMPSON v4.1.1 simulation 

program.[8-10] A 1H-14N-14N spin system was used for simulations to reflect the molecular 

structure of 1 and 2. Simulated dipolar dephasing curves were calculated for several different 

dipolar coupling constants (NH bond lengths) between the 1H spin and the first 14N spin. When 

the NH bond length was varied, the distance and dipolar coupling constant between 1H and the 

2nd nitrogen spin was also varied accordingly. The simulated SIMPSON curves were scaled by a 

saturation factor (f) to match the experimentally observed dipolar dephasing curve intensities 

(Simulated RESPDOR Intensity = 1-f*S/S0). The root mean square deviation (RMSD) was 

calculated for each simulated RESPDOR dephasing curve and different values of the saturation 

factor (Figure S9, S10 and S11B).  The simulated dipolar dephasing curve and saturation factor 

that gave the lowest RMSD were then used to determine the NH bond length. For 2, there is 
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large uncertainty in the NH bond length because many combinations of the NH bond length and 

saturation factor give a reasonable fit of the RESPDOR curve.  

 

 

 
Figure S1. The decay of the longitudinal 1H magnetiation under  SR41

2  symmetry based 

recoupling sequence measured using the pulse sequence shown in Figure 1E of the main text. 

Approximately 80% of the longitudinal 1H magnetization still remains after 2.0 ms total of 

SR41
2 recoupling. Data was obtained with rot = 50 kHz and B0 = 9.4 T.  
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Figure S2. Spin echo pulse sequences used for relaxation measurements shown in Figures 2C, 2D, 

and 5F in the main text. (A) Conventional spin echo, (B) FS spin echo used to measure sensitivity 

curves for conventional and FS J-HMQC experiments, respectively. (C) Recoupled spin echo and 

(D) FS recoupled spin echo used to measure sensitivity curves for conventional and FS D-

HMQC/RESPDOR experiments, respectively.  
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Figure S3. Comparison of 2D 1H{14N} NMR spectra of hist obtained with conventional and FS 

(A) D-HMQC or (C) J-HMQC. The FS HMQC spectra were obtained with the DANTE pulses on 

resonance with the acid 1H NMR signal at 17.2 ppm. Total experiment times are indicated on the 

2D NMR spectra. Comparison of the 1H spectra extracted from the row indicated by dashed lines 

for conventional (blue trace) or FS (red trace) (B) D-HMQC and (D) J-HMQC. The signal-to-

noise-ratio (SNR) and sensitivity (S = SNR × time–1/2) are indicated. The D-HMQC experiments 

were performed with rot = 50 kHz and J-HMQC with rot = 60 kHz. All experiments performed 

with B0 = 9.4 T.  
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Figure S4. Quantification of DANTE excitation efficiency and magnetization losses on hist caused 

by pulse sequence elements required to implement solid-state FS HMQC at 18.8 T. Pulse 

sequences are shown on the left and the resulting NMR spectra on the right. Relative 1H NMR 

signal intensities are indicated.  (A) Reference spectrum obtained with a broadband spin echo. (B) 

Selective spin echo with DANTE train for excitation. (C) Selective saturation of the high-

frequency 1H NMR signal with a DANTE train. (D) A broadband spin echo with a composite -

inversion pulse prior to excitation. (E) A 90°Y – spin-lockX – 90°Y inversion block prior to a 

broadband spin echo. (F) 253 s of total SR41
2 dipolar recoupling and a composite inversion pulse 

prior to a broadband spin echo. All spectra were obtained with 8 scans, τzf = 40 μs, rot = 95 kHz, 

B0 = 18.8 T and recycle delays of 50 s (> 5 ×T1).   
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Figure S5. (A, B) Pulse sequences for (A) conventional HMQC and (B) FS HMQC. SR41

2 dipolar 

recoupling was not applied in the J-HMQC experiments. (C, D) Measurement of relative 

sensitivity for conventional and FS (C) D-HMQC and (D) J-HMQC for the Ha NMR signal of hist.  

Experimental sensitivity curves (open diamonds) and fits to equation 1 in the main text (solid lines) 

are shown. Fit parameters are indicated. (E, F) Comparison of 2D 1H{14N} NMR spectra of hist 

obtained with conventional and FS (E) D-HMQC or (F) J-HMQC. The FS HMQC spectra were 

obtained with the DANTE pulses on resonance with the different 1H NMR signals. For the FS 

HMQC experiments an inversion pulse block with a 2 ms spin-lock was applied prior to the 

frequency selective DANTE block. Total experiment times are indicated. All the experiments 

performed with rot = 95 kHz and B0 = 18.8 T.  
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Figure S6. Comparison of conventional and FS 2D 1H{14N} (A) D-HMQC or (C) J-HMQC spectra 

of hist. The FS HMQC spectra were obtained with the DANTE pulses on resonance with the acid 
1H NMR signal at 17.2 ppm. (B) and (D) show the rows extracted from the conventional D or J-

HMQC (blue dash lines) and the FS HMQC (red dash lines) and the corresponding SNR and 

sensitivities. Total experiment times are indicated. All experiments were performed with rot = 95 

kHz and B0 = 18.8 T.  
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Scheme 1. Molecular structures of GDC-0022 free base and the coformers tosylic acid and fumaric 

acid. 
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Figure S7. Comparison of conventional and FS 1H{14N} HMQC experiments on compound 1. (A) 

Conventional D-HMQC, (B) FS D-HMQC, and (C) SNR and the sensitivity comparison for the 

row indicated by the dashed line. (D) Measurement of the relative sensitivity of D-HMQC and FS 

D-HMQC for the high-frequency ammonium peak. (E) Conventional J-HMQC, (F) FS J-HMQC, 

and (G) SNR and the sensitivity comparison of the row indicated by the dashed lines. (H) 

Measurement of the relative sensitivity of the conventional and FS J-HMQC for the high-

frequency ammonium peak. The total experimental times are noted on the 2D spectra. The values 

of fo, fe and TB used for the curve fitting are indicated on each plot. D-HMQC experiments were 

performed with rot = 50 kHz and J-HMQC with rot = 60 kHz. All experiments were performed 

with B0 = 9.4 T.  
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Figure S8. Comparison of conventional and FS 1H{14N} HMQC experiments on compound 2. (A) 

Conventional D-HMQC, (B) FS D-HMQC, and (C) SNR and the sensitivity comparison for the 

row indicated by the dashed line. (D) Measurement of the relative sensitivity of D-HMQC and FS 

D-HMQC for the high-frequency ammonium. (E) Conventional J-HMQC, (F) FS J-HMQC, and 

(G) SNR and the sensitivity comparison of the row indicated by the dashed lines. (H) Measurement 

of the relative sensitivity of the conventional and FS J-HMQC for the high-frequency ammonium 

peak. The total experimental times are noted on the 2D spectra. The values of fo, fe and TB used for 

the curve fitting are indicated on each plot. D-HMQC experiments were performed with rot = 50 

kHz and J-HMQC with rot = 60 kHz. All experiments were performed with B0 = 9.4 T.  
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Figure S9. (A) FS RESPDOR pulse sequence used for measurements of NH dipolar couplings and 

inter-atomic distances. (B) The RMSD of calculated RESPDOR curves compared to the 

experimental RESPDOR curves for different N-H dipolar couplings (distances) for compound 1. 

The saturation factor (f) was also varied for each distance. A scaling factor of 0.80 gives the 

minimum RMSD. Calculated curves for different distances are compared to the experimental curve 

in Figure 4D of the main text. Only the initial part of the experimental curve was used to determine 

the RMSD values. 
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Figure S10. The RMSD of calculated RESPDOR curves compared to the experimental RESPDOR 

curves for different N-H dipolar couplings (distances) for compound 2. The saturation factor (f) 

was also varied for each distance. A scaling factor of 0.45 gives the minimum RMSD. Calculated 

curves for different distances are compared to the experimental curve in Figure 4D of the main 

text.   
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Figure S11. (A) FS-RESPDOR curves for the high frequency 1H signal at 17.2 ppm of hist. The 

plot shows the experimental curve (red squares) and numerical simulations for different distances. 

The saturation factor (f) was set to 0.85. (B) The RMSD plots for hist with varying the scaling 

factor used for the distance estimation in (A). A scaling factor of 0.85 gives the minimum standard 

deviation for hist. 
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Figure S12.  (A) 1D 1H spin echo and (B) 2D 1H{14N} FS D-HMQC spectrum of sulfathiazole. A 

recycle delay of 60 s was used. The experiment time is indicated. (C) The molecular structure of 

sulfathiazole. (D) Comparison of the relative sensitivity of conventional and FS D-HMQC as a 

function of inter-scan delay. The fitting parameters are indicated on the plots. 
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Figure S13. Comparison of (A) 1H{17O} J-HMQC and (B) 1H{17O} FS J-HMQC spectra of 17O-

labelled Fmoc-alanine. The experiment times for the 2D spectra are indicated. (C) Comparison of 

relative sensitivities for conventional and FS J-HMQC for different inter-scan delays. The fit 

parameters are indicated along with the curves. The experiments were performed with B0 = 9.4 T 

and rot = 60 kHz. 
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Figure S14. Comparison of (A) 1H{35Cl} D-HMQC and (B) 1H{35Cl} FS D-HMQC spectra of 

hist. The experiment times for the 2D spectra are indicated. (C) SNR and the sensitivity 

comparison for the row indicated by the dashed line. The experiments were performed with B0 = 

9.4 T at rot = 50 kHz. 
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Table S1. Simulated and calculated 14N NMR parameters for 1 and 2. 

 

Compound iso (ppm)a CQ (MHz) Q 

(1) – Simulateda –160 2.5 0.10 

(1) – Calculatedb –159.7 2.7 0.10 

(2) – Simulateda –90 3.4 0.90 

(2) – Calculatedb –88.2/89.3c 3.6/3.5 0.90/0.70 
 

a Simulated parameters were determined from the analytical simulations of the 14N solid-state 

NMR spectra extracted from the 2D 1H{14N} D-HMQC spectra. The 14N isotropic shift was fixed 

to the value previously measured with DNP-enhanced 15N solid-state NMR spectroscopy for the 

analytical simulations. The CQ and Q were then varied to give the best agreement between the 

simulated and experimental spectrum. There is large uncertainty associated with the experimental 

values of Q. b Calculated parameters were obtained from plane-wave DFT calculations. c 

Compound 2 is a hemi-fumaric acid compound where two inequivalent molecules of GDC-0022 

form hydrogen bonds to a single fumaric acid molecule. The calculated 14N parameters are given 

for the two distinct GDC-0022 molecules in the unit cell. 

 

Table S2. Input parameters for SIMPSON simulations of 1H{14N} RESPDOR dephasing curves.  

(Figures 4D and S11A) 

 

Compound 

Dipole-

Quadrupole 

Euler Angles 

(deg) 

14N 

Frequency 

Offseta 

(ppm) 

iso 

(ppm) 

aniso 

(ppm) 
CS 

CQ 

(MHz) 
Q 

       

Hist 108 131 +208 -190.7 204 0.4 1.55 0.13 

(1) 1H-14NA 
b 117 135 +661 –159.7 200 0.5 2.7 0.10 

(1) 1H-14NB 
b 28 20  -95.5 342 0.9 4.6 0.60 

(2) 1H-14NA 
b 7 81 +1160 –88.2 320 0.5 3.6 0.70 

(2) 1H-14NB 
b 170 133  -66.3 360 0.7 4.5 0.50 

 

 

a The 14N transmitter frequency was increased by this amount so that the 14N RESPDOR saturation 

pulse was applied at the approximate center of gravity of the site A MAS powder pattern. This 

mimics the experimental optimization of the 14N transmitter offset to maximize dephasing. b 14NA 

corresponds to the protonated nitrogen/nitrogen with shorter 1H-14N distance and 14NB corresponds 

to the non-protonated nitrogen atom. 
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CHAPTER 4.    GENERAL CONCLUSION  

This thesis demonstrates the use of fast magic angle spinning solid-state NMR 

spectroscopy to characterize pure and formulated pharmaceuticals. In chapter 2, fast MAS 1H 

SSNMR is used to look at pure and commercial drug products. Here, 1D and 2D NMR 

experiments are used to identify the solid forms of dilute API within formulations. The 1H 

SSNMR experiments are compared with 13C SSNMR, which is the workhorse method to 

characterize pharmaceuticals. The sensitivity of the 1H NMR greatly exceeds that of 13C and 

enables a 1-3 order reduction in the experiment time. Diagnostic 1H SSNMR spectra of dilute 

APIs within formulations and commercial drug products can typically be obtained in minutes, 

even when the API has unfavorable T1 relaxation times and low API loading, whereas 13C 

SSNMR spectra would require hours or days of signal averaging to obtain NMR spectra of 

similar SNR. Also, the use of fast MAS 1H SSNMR to distinguish different polymorphs of APIs 

within mixtures of APIs and excipients is presented. For the polymorphic forms of APIs, 

theophylline and mexiletine the 1H SSNMR spectra of different crystalline forms are distinct, 

allowing polymorphic forms to be identified and detected based on 1H chemical shifts or based 

on different responses to saturation and excitation pulses. Experiments on theophylline mixtures 

demonstrate that 1H SSNMR spectra are quantitative after calibration on the individual 

components of the formulation. 

Chapter 3 discusses the use of fast MAS FS HMQC experiments which function 

analogously to solution SOFAST HMQC NMR experiments. Dipolar and scalar 1H{14N} FS 

HMQC SSNMR experiments routinely provide 4- to 9-fold reductions in experiment times as 

compared to conventional HMQC SSNMR experiments. 1H{14N} FS RESPDOR allowed dipolar 

dephasing curves to be obtained in minutes, enabling the rapid determination of NH dipolar 
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coupling constants and inter-nuclear distances. 1H{14N} FS RESPDOR was used to assign 

multicomponent active pharmaceutical ingredients (APIs) as salts or cocrystals. FS HMQC also 

provided enhanced sensitivity for 1H{17O} and 1H{35Cl} HMQC experiments on 17O labeled 

Fmoc-alanine and histidine hydrochloride monohydrate, respectively. While the focus of the 

current work has been on pharmaceuticals, the methods described here should also be applicable 

to study other complex mixtures of organic solids and the FS HMQC and FS RESPDOR 

experiments will provide access to valuable structural constraints from materials that are 

challenging to study due to unfavorable relaxation times or dilution of the nuclei of interest. 
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